【点评】若试题给出的是单纯的线性规划问题,则百味全无.而命题者悄悄地将
换成
,同学们在解题过程中必须看透这一伎俩,将数列问题转化为线性规划问题,顿觉简单异常.本题设计遵循基础与能力并重,知识与能力并举的原则,意在考查等差数列的通项公式、前
项和公式以及不等式性质等知识,但实在考查数形结合的思想方法.
【总结提炼】综上,我们主要介绍了填空题几种常见的解法,当然解法会很多,所以我们要在平时注意发现、探索、总结,小题终究是小题,只要多思考,多挖掘新方法、巧方法,那我们解题时才有事半功倍的效果.
- 答案
1. 构造向量
,
,所以
,
.由数量积的性质
,得
,即
的最大值为2.
2. ∵
,令
得
,所以
,当
时,
,当
时,
,所以当
时,
.
3.∵
,∴
,
,又
,∴
,则
,所以周期
.作出
在
上的图象知:若
,满足条件的
(
)存在,且
,
关于直线
对称,
,
关于直线
对称,∴
;若
,满足条件的
(
)存在,且
,
关于直线
对称,
,
关于直线
对称,
∴
.
4. 不等式
(
)表示的区域是如图所示的菱形的内部,
∵![]()
,
当
,点
到点
的距离最大,此时
的最大值为
;
当
,点
到点
的距离最大,此时
的最大值为3.
5. 由于已有两人分别抽到5和14两张卡片,则另外两人只需从剩下的18张卡片中抽取,共有
种情况.抽到5 和14的两人在同一组,有两种情况:
(1) 5 和14 为较小两数,则另两人需从15~20这6张中各抽1张,有
种情况;
(2) 5 和14 为较大两数,则另两人需从1~4这4张中各抽1张,有
种情况.
于是,抽到5 和14 两张卡片的两人在同一组的概率为
.
6. ∵
,∴
,
设
,
,则
.
作出该不等式组表示的平面区域(图中的阴影部分
).
令
,则
,它表示斜率为
的一组平行直线,易知,当它经过点
时,
取得最小值.
解方程组
,得
,∴![]()