解:如图,B、D、A1到平面的距离分别为1、2、4,则D、A1的中点到平面的距离为3,所以D1到平面的距离为6;B、A1的中点到平面的距离为,所以B1到平面的距离为5;则D、B的中点到平面的距离为,所以C到平面的距离为3;C、A1的中点到平面的距离为,所以C1到平面的距离为7;而P为C、C1、B1、D1中的一点,所以选①③④⑤。

(17)(本大题满分12分)已知

(Ⅰ)求的值;

(Ⅱ)求的值。

解:(Ⅰ)由得,即,又,所以为所求。

(Ⅱ)=

===。

(18)(本大题满分12分)在添加剂的搭配使用中,为了找到最佳的搭配方案,需要对各种不同的搭配方式作比较。在试制某种牙膏新品种时,需要选用两种不同的添加剂。现有芳香度分别为0,1,2,3,4,5的六种添加剂可供选用。根据试验设计原理,通常首先要随机选取两种不同的添加剂进行搭配试验。用表示所选用的两种不同的添加剂的芳香度之和。

(Ⅰ)写出的分布列;(以列表的形式给出结论,不必写计算过程)

(Ⅱ)求的数学期望。(要求写出计算过程或说明道理)

解:(Ⅰ)

1

2

3

4

5

6

7

8

9

P

(Ⅱ)

(19)(本大题满分12分)如图,P是边长为1的正六边形ABCDEF所在平面外一点,,P在平面ABC内的射影为BF的中点O。

(Ⅰ)证明⊥;

(Ⅱ)求面与面所成二面角的大小。

解:(Ⅰ)在正六边形ABCDEF中,为等腰三角形,

∵P在平面ABC内的射影为O,∴PO⊥平面ABF,∴AO为PA在平面ABF内的射影;∵O为BF中点,∴AO⊥BF,∴PA⊥BF。

(Ⅱ)∵PO⊥平面ABF,∴平面PBF⊥平面ABC;而O为BF中点,ABCDEF是正六边形 ,∴A、O、D共线,且直线AD⊥BF,则AD⊥平面PBF;又∵正六边形ABCDEF的边长为1,∴,,。

过O在平面POB内作OH⊥PB于H,连AH、DH,则AH⊥PB,DH⊥PB,所以为所求二面角平面角。

在中,OH=,=。

在中,;

(Ⅱ)以O为坐标原点,建立空间直角坐标系,P(0,0,1),A(0,,0),B(,0,0),D(0,2,0),∴,,

设平面PAB的法向量为,则,,得,;

设平面PDB的法向量为,则,,得,;

(20)(本大题满分12分)已知函数在R上有定义,对任何实数和任何实数,都有

(Ⅰ)证明;(Ⅱ)证明 其中和均为常数;

(Ⅲ)当(Ⅱ)中的时,设,讨论在内的单调性并求极值。

证明(Ⅰ)令,则,∵,∴。

(Ⅱ)①令,∵,∴,则。

假设时,,则,而,∴,即成立。

②令,∵,∴,

假设时,,则,而,∴,即成立。∴成立。

(Ⅲ)当时,,

令,得;

当时,,∴是单调递减函数;

当时,,∴是单调递增函数;

所以当时,函数在内取得极小值,极小值为

(21)(本大题满分12分)数列的前项和为,已知

(Ⅰ)写出与的递推关系式,并求关于的表达式;

(Ⅱ)设,求数列的前项和。

解:由得:,即,所以,对成立。

由,,…,相加得:,又,所以,当时,也成立。

(Ⅱ)由,得。

而,

(22)(本大题满分14分)如图,F为双曲线C:的右焦点。P为双曲线C右支上一点,且位于轴上方,M为左准线上一点,为坐标原点。已知四边形为平行四边形,。

(Ⅰ)写出双曲线C的离心率与的关系式;

(Ⅱ)当时,经过焦点F且平行于OP的直线交双曲线于A、B点,若,求此时的双曲线方程。

解:∵四边形是,∴,作双曲线的右准线交PM于H,则,又,。

(Ⅱ)当时,,,,双曲线为四边形是菱形,所以直线OP的斜率为,则直线AB的方程为,代入到双曲线方程得:,

又,由得:,解得,则,所以为所求。

 

  • 答案
关闭