f(x)= 由f(l)=5, 即 得m=6.
所以a=2,b=-9,c=12.
(17)(共14分)
解法一:
(Ⅰ)∵ABCD―A1B1C1D1是正四棱柱,∴CC1⊥平面ADCD, ∴BD⊥CC1
∵ABCD是正方形 ∴BD⊥AC 又∵AC,CC1平面ACC1A1,
且AC∩CC1=C, ∴BD⊥平面ACC1A1.
(Ⅱ) 设BD与AC相交于O,连接C1O. ∵CC1⊥平面ADCD, ∴BD⊥AC,
∴BD⊥C1O, ∴∠C1OC∠是二面角C1―BD―C的平面角,
∴∠C1OC=60o. 连接A1B. ∵A1C1//AC, ∴∠A1C1B是BC1与AC所成的角.
设BC=a,则∴异面直线BC1与AC所成角的大小为
解法二:
(Ⅰ)建立空间直角坐标系D―xyz,如图.
设AD=a,DD1=b,则有D(0,0,0),A(a,0,0),B(a,a,0),C(0,a,0),C1(0,a,b),
(Ⅱ)设BD与AC相交于O,连接C1O,则点O坐标为
∴异面直线BC1与AC所成角的大小为
(18)(共13分)
解:记该应聘者对三门指定课程考试及格的事件分别为A,B,C,
- 答案