因0<p<1,所以时,p的取值范围是0<p<0.3.

【点评】本小题考查二项分布、分布列、数学期望、方差等基础知识,考查同学们运用概率知识解决实际问题的能力.

(20) (本小题满分14分)

已知点,是抛物线上的两个动点,是坐标原点,向量,满足.设圆的方程为

(I) 证明线段是圆的直径;

(II)当圆C的圆心到直线X-2Y=0的距离的最小值为时,求p的值。

【解析】(I)证明1:

整理得:

设M(x,y)是以线段AB为直径的圆上的任意一点,则

整理得:

故线段是圆的直径

证明2:

整理得:

……..(1)

设(x,y)是以线段AB为直径的圆上则

去分母得:

点满足上方程,展开并将(1)代入得:

故线段是圆的直径

证明3:

整理得:

……(1)

以线段AB为直径的圆的方程为

展开并将(1)代入得:

故线段是圆的直径

(II)解法1:设圆C的圆心为C(x,y),则

又因

所以圆心的轨迹方程为

设圆心C到直线x-2y=0的距离为d,则

当y=p时,d有最小值,由题设得

.

解法2: 设圆C的圆心为C(x,y),则

又因

所以圆心的轨迹方程为

设直线x-2y+m=0到直线x-2y=0的距离为,则

因为x-2y+2=0与无公共点,

所以当x-2y-2=0与仅有一个公共点时,该点到直线x-2y=0的距离最小值为

将(2)代入(3)得

解法3: 设圆C的圆心为C(x,y),则

圆心C到直线x-2y=0的距离为d,则

又因

当时,d有最小值,由题设得

.

【点评】本小题考查了平面向量的基本运算,圆与抛物线的方程.点到直线的距离公式等基础知识,以及综合运用解析几何知识解决问题的能力.

  • 答案
关闭