22.解: (Ⅰ)由 Sn=an-×2n+1+, n=1,2,3,… , ①  得 a1=S1= a1-×4+ 所以a1=2.

再由①有 Sn1=an1-×2n+, n=2,3,4,…

将①和②相减得: an=Sn-Sn1= (an-an1)-×(2n+1-2n),n=2,3, …

整理得: an+2n=4(an1+2n1),n=2,3, … , 因而数列{ an+2n}是首项为a1+2=4,公比为4的等比数列,即 : an+2n=4×4n1= 4n, n=1,2,3, …, 因而an=4n-2n, n=1,2,3, …,

(Ⅱ)将an=4n-2n代入①得 Sn= ×(4n-2n)-×2n+1 + = ×(2n+1-1)(2n+1-2)

   = ×(2n+1-1)(2n-1)   

 Tn= = × = ×( - )

所以, = - )  = ×( - ) <

 

  • 答案
关闭