20.解: 椭圆方程可写为: + =1   式中a>b>0 , 且  得a2=4,b2=1,所以曲线C的方程为:  x2+ =1 (x>0,y>0). y=2(0<x<1) y '=-

设P(x0,y0),因P在C上,有0<x0<1, y0=2, y '|x=x0= - ,得切线AB的方程为:

y=- (x-x0)+y0 . 设A(x,0)和B(0,y),由切线方程得 x= , y= .

由= +得M的坐标为(x,y), 由x0,y0满足C的方程,得点M的轨迹方程为:

+ =1 (x>1,y>2)  

(Ⅱ)| |2= x2+y2,  y2= =4+ ,

  • 答案
关闭