3.本卷共10小题,共90分。
⒀、已知正四棱锥的体积为12,底面对角线的长为,则侧面与底面所成的二面角等于_______________。
⒁、设,式中变量满足下列条件
则z的最大值为_____________。
⒂、安排7位工作人员在5月1日到5月7日值班,每人值班一天,其中甲、乙二人都不能安排在5月1日和2日,不同的安排方法共有__________种。(用数字作答)
⒃、设函数。若是奇函数,则__________。
⒄、(本小题满分12分)
的三个内角为,求当A为何值时,取得最大值,并求出这个最大值。
⒅、(本小题满分12分)
A、B是治疗同一种疾病的两种药,用若干试验组进行对比试验。每个试验组由4只小白鼠组成,其中2只服用A,另2只服用B,然后观察疗效。若在一个试验组中,服用A有效的小白鼠的只数比服用B有效的多,就称该试验组为甲类组。设每只小白鼠服用A有效的概率为,服用B有效的概率为。
(Ⅰ)求一个试验组为甲类组的概率;
(Ⅱ)观察3个试验组,用表示这3个试验组中甲类组的个数,求的分布列和数学期望。
⒆、(本小题满分12分)
如图,、是互相垂直的异面直线,MN是它们的公垂线段。点A、B在上,C在上,。
(Ⅰ)证明⊥;
(Ⅱ)若,求与平面ABC所成角的余弦值。
⒇、(本小题满分12分)
在平面直角坐标系中,有一个以和为焦点、离心率为的椭圆,设椭圆在第一象限的部分为曲线C,动点P在C上,C在点P处的切线与轴的交点分别为A、B,且向量。求:
(Ⅰ)点M的轨迹方程;
(Ⅱ)的最小值。
(21)、(本小题满分14分)
已知函数。
(Ⅰ)设,讨论的单调性;
(Ⅱ)若对任意恒有,求的取值范围。
(22)、(本小题满分12分)
设数列的前项的和
,
(Ⅰ)求首项与通项;
(Ⅱ)设,,证明:
题号
1
2
3
4
5
6
7
8
9
10
11
12
答案
B
D
A
B
C
B
C
A
D
B
B
B
- 答案