2.       答卷前将密封线内的项目填写清楚。

(13)某学校共有师生2400人,现用分层抽样的方法,从所有师生中抽取一个容量为160的样本,已知从学生中抽取的人数为150,那么该学校的教师人数是     .

(14)设为等差数列的前n项和,=14,-=30,则=    .

(15)已知抛物线,过点P(4,0)的直线与抛物线相交于A(两点,则y的最小值是

     

(16)如图,在正三棱柱ABC-中,所有棱长均为1,则点B到平面ABC的距离为    .

 

(17)(本小题满分12分)

设函数f(x)=

(Ⅰ)求f(x)的单调区间;

(Ⅱ) 讨论f(x)的极值.
(18)(本小题满分12分)

已知函数f(x)=A且y=f(x)的最大值为2,其图象相邻两对称轴间的距离为2,并过点(1,2).

(Ⅰ)求;

(Ⅱ)计算f(1)+f(2)+…+f(2008).

(19)(本小题满分12分)

盒中装着标有数字1,2,3,4的卡片各2张,从盒中任意任取3张,每张卡片被抽出的可能性都相等,求:

(Ⅰ)抽出的3张卡片上最大的数字是4的概率;

(Ⅱ)抽出的3张中有2张卡片上的数字是3的概念;

(Ⅲ)抽出的3张卡片上的数字互不相同的概率.

(20) (本小题满分12分)

如图,已知四棱锥P-ABCD的底面ABCD为等腰梯形,AB∥DC,AC⊥BD,AC与BD相交于点O,且顶点P在底面上的射影恰为O点,又BO=2,PO=,PB⊥PD.

(Ⅰ)求异面直接PD与BC所成角的余弦值;

(Ⅱ)求二面角P-AB-C的大小;

(Ⅲ)设点M在棱PC上,且为何值时,PC⊥平面BMD.

(21)(本小题满分12分)

已知椭圆的中心在坐标原点O,焦点在x轴上,椭圆的短轴端点和焦点所组成的四边形为正方形,两准线间的距离为l.

(Ⅰ)求椭圆的方程;

(Ⅱ)直线过点P(0,2)且与椭圆相交于A、B两点,当ΔAOB面积取得最大值时,求直线l的方程.

(22)(本小题满分14分)

已知数列{}中,在直线y=x上,其中n=1,2,3….

(Ⅰ)令

(Ⅱ)求数列

(Ⅲ)设的前n项和,是否存在实数,使得数列为等差数列?若存在,试求出.若不存在,则说明理由。

 

 

 

答案

2006年普通高等学校招生全国统一考试(山东卷)

文科数学答案

 

  • 答案
关闭