已知抛物线C:
,过C上一点M,且与M处的切线垂直的直线称为C在点M的法线.
- 答案
一、选择题
题号
1
2
3
4
5
6
7
8
9
10
答案
D
A
A
D
B
C
C
B
C
D
二、填空题
11.
cosx+sinx _ 12.![]()
13._____ -1____________ 14.![]()
15.
16.![]()
17.![]()
三、解答题
18.解:由椭圆的标准方程知椭圆的焦点为
,离心率为
………………3分
因为双曲线与椭圆有相同的焦点,所以,双曲线焦点在x轴上,c=4,………………2分
又双曲线与椭圆的离心率之和为
,故双曲线的离心率为2,所以a=2………………4分
又b2=c2-a2=16-4=12。………………………………………………………………………2分
所以双曲线的标准方程为
。………………………………………………1分
19.解:p真:m<0…………………………………………………………………………2分
q真:
……………………………………………………………2分
故-1<m<1。…………………………………………………………………………………2分
由
和
都是假命题知:p真q假,………………………………………………4分
故
。………………………………4分
20.解:(1)设|PF2|=x,则|PF1|=2a-x……………………………………………………2分
∵
,∴
, ∴
…………1分
∴
,……………………………………………………………………2分
………………………………2分
(2)由题知a=4,
,故
………………………………………………1分
由
得
,…………………………………………………………………1分
又
……………………………………2分
故
,代入椭圆方程得
,………………………………………2分
故Q点的坐标为
,
,
,
。
…………………………………………………………………………………………………2分
21.解:(1)由函数
,求导数得
,…1分
由题知点P在切线上,故f(1)=4,…………………………………………………………1分
又切点在曲线上,故1+a+b+c=4①…………………………………………………………1分
且
,故3+2a+b=3②………………………………………………………………1分
③……………………2分
故
……………………1分
(2)
…………………………1分
x
![]()
-2
![]()
![]()
![]()
![]()
+
0
-
0
+
![]()
![]()
极大值
![]()
极小值
![]()
有表格或者分析说明…………………………………………………………………………3分
![]()
,…………………………………………………………2分
∴f(x)在[-3,1]上最大值为13。故m的取值范围为{m|m>13}………………………2分
22.解:(1)由题意设过点M的切线方程为:
,…………………………1分
代入C得
,则
,………………2分
,即M(-1,
).………………………………………2分
另解:由题意得过点M的切线方程的斜率k=2,…………………………………………1分
设M(x0,y0),
,………………………………………………………………1分
由导数的几何意义可知2x0+4=2,故x0= -1,……………………………………………2分
代入抛物线可得y0=
,点M的坐标为(-1,
)……………………………………1分
(2)假设在C上存在点
满足条件.设过Q的切线方程为:
,代入![]()
,
则
,
且![]()
.………………………………………………………2分
若
时,由于
,…………………2分
当a>0时,有![]()
∴
或
;……………………………………2分
当a≤0时,∵k≠0,故 k无解。……………………………………………………1分
若k=0时,显然
也满足要求.…………………………………………1分
综上,当a>0时,有三个点(-2+
,
),(-2-
,
)及(-2,-
),且过这三点的法线过点P(-2,a),其方程分别为:
x+2
y+2-2a
=0,x-2
y+2+2a
=0,x=-2。
当a≤0时,在C上有一个点(-2,-
),在这点的法线过点P(-2,a),其方程为:x=-2。……………………………………………………………………………………3分