19.[解]x须满足
所以函数的定义域为(-1,0)∪(0,1).
因为函数的定义域关于原点对称,且对定义域内的任意x,有
,所以是奇函数.
研究在(0,1)内的单调性,任取x1、x2∈(0,1),且设x1<x2 ,则
得>0,即在(0,1)内单调递减,
由于是奇函数,所以在(-1,0)内单调递减.
- 答案
19.[解]x须满足
所以函数的定义域为(-1,0)∪(0,1).
因为函数的定义域关于原点对称,且对定义域内的任意x,有
,所以是奇函数.
研究在(0,1)内的单调性,任取x1、x2∈(0,1),且设x1<x2 ,则
得>0,即在(0,1)内单调递减,
由于是奇函数,所以在(-1,0)内单调递减.