20.若动圆C与圆(x-2)2+y2=1外切,且和直线x+1=0相切.求动圆圆心C的轨迹E的方程.

解:设动圆的圆心C的坐标为(x,y),则x-(-1)+1=,即x+2=,整理得y2=8x.所以所求轨迹E的方程为y2=8x.

21解:假设存在斜率为1的直线l,使l被圆C截得的弦AB为直径的圆过原点.设l的方程为y=x+b,A(x1,y1),B(x2,y2).

OAOB知,kOA·kOB=-1,即=-1,∴y1y2=-x1x2.

,得2x2+2(b+1)x+b2+4b-4=0,

x1+x2=-(b+1),x1·x2=+2b-2,y1y2=(x1+b)(x2+b)=x1x2+b(x1+x2)+b2

=+2b-2-b(b+1)+b2=+b-2

y1y2=-x1x2   +b-2=-(+2b-2) 即b2+3b-4=0.∴b=-4或b=1.

又Δ=4(b+1)2-8(b2+4b-4)=-4b2-24b+36=-4(b2+6b-9)

b=-4时,Δ=-4×(16-24-9)>0;  =1时,Δ=-4×(1+6-9)>0

故存在这样的直线l,它的方程是y=x-4或y=x+1,即xy-4=0或xy+1=0.

  • 答案
关闭