21. 设关于x的一元二次方程2x2-ax-2=0的两根的α、β(α<β),函数f(x)=

⑴求f(α)·f(β)的值;⑵证明f(x)是[α,β]的增函数;

(3)当a为何值时,f(x)在区间[α,β]上的最大值与最小值之差最小?

解:⑴ f(α)f(β)=-4

⑵设α≤x1<x2≤β,f(x1)-f(x2)= 17. 已知函数的定义域为,值域为.试求函数()的最小正周期和最值

解: ……2’

…………………………4’

>0时,

解得,………………………………………………………………6’

从而,

T=,最大值为5,最小值为-5;………………………………………………8’

当m<0时, 解得,………………………………………………10’

从而,,T=,最大值为

最小值为.……………………………………………………………………12

  • 答案
关闭