题目列表(包括答案和解析)
已知,函数
(1)当时,求函数
在点(1,
)的切线方程;
(2)求函数在[-1,1]的极值;
(3)若在上至少存在一个实数x0,使
>g(xo)成立,求正实数
的取值范围。
【解析】本试题中导数在研究函数中的运用。(1)中,那么当
时,
又
所以函数
在点(1,
)的切线方程为
;(2)中令
有
对a分类讨论,和
得到极值。(3)中,设
,
,依题意,只需
那么可以解得。
解:(Ⅰ)∵ ∴
∴ 当时,
又
∴ 函数在点(1,
)的切线方程为
--------4分
(Ⅱ)令 有
①
当即
时
|
(-1,0) |
0 |
(0, |
|
( |
|
+ |
0 |
- |
0 |
+ |
|
|
极大值 |
|
极小值 |
|
故的极大值是
,极小值是
②
当即
时,
在(-1,0)上递增,在(0,1)上递减,则
的极大值为
,无极小值。
综上所述 时,极大值为
,无极小值
时 极大值是
,极小值是
----------8分
(Ⅲ)设,
对求导,得
∵,
∴ 在区间
上为增函数,则
依题意,只需,即
解得 或
(舍去)
则正实数的取值范围是(
,
)
(本题满分18分,第(1)小题4分,第(2)小题6分,第(3)小题8分)
在平行四边形中,已知过点
的直线与线段
分别相交于点
。若
。
(1)求证:与
的关系为
;
(2)设,定义函数
,点列
在函数
的图像上,且数列
是以首项为1,公比为
的等比数列,
为原点,令
,是否存在点
,使得
?若存在,请求出
点坐标;若不存在,请说明理由。
(3)设函数为
上偶函数,当
时
,又函数
图象关于直线
对称, 当方程
在
上有两个不同的实数解时,求实数
的取值范围。
(本题满分18分,第(1)小题4分,第(2)小题6分,第(3)小题8分)
在平行四边形中,已知过点
的直线与线段
分别相交于点
。若
。
(1)求证:与
的关系为
;
(2)设,定义函数
,点列
在函数
的图像上,且数列
是以首项为1,公比为
的等比数列,
为原点,令
,是否存在点
,使得
?若存在,请求出
点坐标;若不存在,请说明理由。
(3)设函数为
上偶函数,当
时
,又函数
图象关于直线
对称, 当方程
在
上有两个不同的实数解时,求实数
的取值范围。
(本题满分18分,第(1)小题4分,第(2)小题6分,第(3)小题8分)
在平行四边形中,已知过点
的直线与线段
分别相交于点
。若
。
(1)求证:与
的关系为
;
(2)设,定义函数
,点列
在函数
的图像上,且数列
是以首项为1,公比为
的等比数列,
为原点,令
,是否存在点
,使得
?若存在,请求出
点坐标;若不存在,请说明理由。
(3)设函数为
上偶函数,当
时
,又函数
图象关于直线
对称,当方程
在
上有两个不同的实数解时,求实数
的取值范围。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com