40.(山东卷)已知函数f(x)=A(A>0,>0,0<<函数,且y=f(x)的最大值为2,其图象相邻两对称轴间的距离为2,并过点(1,2).

(1)求;

(2)计算f(1)+f(2)+… +f(2 008).

解:(I)

的最大值为2,.

其图象相邻两对称轴间的距离为2,

.

点,

.

(II)解法一:

.

的周期为4,

解法二:

的周期为4,

41(陕西卷)已知函数f(x)=sin(2x-)+2sin2(x-) (x∈R)

(Ⅰ)求函数f(x)的最小正周期   ;  (2)求使函数f(x)取得最大值的x的集合.

解:(Ⅰ) f(x)=sin(2x-)+1-cos2(x-)

      = 2[sin2(x-)- cos2(x-)]+1

     =2sin[2(x-)-]+1

     = 2sin(2x-) +1 

T==π

  (Ⅱ)当f(x)取最大值时, sin(2x-)=1,有  2x- =2kπ+

x=kπ+   (kZ)  ∴所求x的集合为{xR|x= kπ+ ,  (kZ)}.

  • 答案
关闭