20.解(I)从第n年初到第n+1年初,鱼群的繁殖量为axn,被捕捞量为bxn,死亡量为

  (II)若每年年初鱼群总量保持不变,则xn恒等于x1, n∈N*,从而由(*)式得

    

     因为x1>0,所以a>b.

     猜测:当且仅当a>b,且时,每年年初鱼群的总量保持不变.

  (Ⅲ)若b的值使得xn>0,n∈N*

     由xn+1=xn(3-b-xn), n∈N*, 知

     0<xn<3-b, n∈N*, 特别地,有0<x1<3-b. 即0<b<3-x1.

     而x1∈(0, 2),所以

     由此猜测b的最大允许值是1.

     下证 当x1∈(0, 2) ,b=1时,都有xn∈(0, 2), n∈N*

     ①当n=1时,结论显然成立.

②假设当n=k时结论成立,即xk∈(0, 2),

则当n=k+1时,xk+1=xk(2-xk­)>0.

又因为xk+1=xk(2-xk)=-(xk-1)2+1≤1<2,

所以xk+1∈(0, 2),故当n=k+1时结论也成立.

由①、②可知,对于任意的n∈N*,都有xn∈(0,2).

综上所述,为保证对任意x1∈(0, 2), 都有xn>0, n∈N*,则捕捞强度b的最大允许值是1.

  • 答案
关闭