19.(Ⅰ)证法一:因为A、B分别是直线lx轴、y轴的交点,所以A、B的坐标分别是.

   所以点M的坐标是().   由

   证法二:因为A、B分别是直线lx轴、y轴的交点,所以A、B的坐标分别是设M的坐标是

所以    因为点M在椭圆上,所以 

  解得

  (Ⅱ)解法一:因为PF1l,所以∠PF1F2=90°+∠BAF1为钝角,要使△PF1F2为等腰三角形,必有|PF1|=|F1F2|,即

   设点F1l的距离为d,由

   得  所以

   即当△PF1F­2­­为等腰三角形.

解法二:因为PF1l,所以∠PF1F2=90°+∠BAF1为钝角,要使△PF1F2为等腰三角形,必有|PF1|=|F1F2|,

设点P的坐标是

由|PF1|=|F1F2|得

两边同时除以4a2,化简得  从而

于是.   即当时,△PF1F2为等腰三角形.

  • 答案
关闭