(17)(本小题满分12分)

已知向量,且的值.

(18)(本小题满分12分)

袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取……取后不放回,直到两人中有一人取到白球时既终止,每个球在每一次被取出的机会是等可能的,用表示取球终止所需要的取球次数.

(I)求袋中原有白球的个数;

(II)求随机变量的概率分布;

(III)求甲取到白球的概率.

(19)(本小题满分12分)

已知是函数的一个极值点,其中

(I)求的关系式;

(II)求的单调区间;

(III)当时,函数的图象上任意一点的切线斜率恒大于3,求的取值范围.

(20)(本小题满分12分)

如图,已知长方体直线与平面所成的角为垂直的中点.

(I)求异面直线所成的角;

(II)求平面与平面所成的二面角;

(III)求点到平面的距离.

(21)(本小题满分12分)

已知数列的首项项和为,且

(I)证明数列是等比数列;

(II)令,求函数在点处的导数并比较的大小.

(22)(本小题满分14分)

已知动圆过定点,且与直线相切,其中.

(I)求动圆圆心的轨迹的方程;

(II)设A、B是轨迹上异于原点的两个不同点,直线的倾斜角分别为,当变化且为定值时,证明直线恒过定点,并求出该定点的坐标.

  • 答案
关闭