18.本小题主要考查直线与平面垂直、直线与平面所成角的有关知识及思维能力和空间想象能力.考查应用向量知识解决数学问题的能力.满分12分.

  方案一:

(Ⅰ)证明:∵PA⊥面ABCD,CD⊥AD,

∴由三垂线定理得:CD⊥PD.

因而,CD与面PAD内两条相交直线AD,PD都垂直,

∴CD⊥面PAD.

又CD面PCD,∴面PAD⊥面PCD.

(Ⅱ)解:过点B作BE//CA,且BE=CA,

则∠PBE是AC与PB所成的角.

连结AE,可知AC=CB=BE=AE=,又AB=2,

所以四边形ACBE为正方形.  由PA⊥面ABCD得∠PEB=90°

在Rt△PEB中BE=,PB=,    

(Ⅲ)解:作AN⊥CM,垂足为N,连结BN.

在Rt△PAB中,AM=MB,又AC=CB,

∴△AMC≌△BMC,

∴BN⊥CM,故∠ANB为所求二面角的平面角.

∵CB⊥AC,由三垂线定理,得CB⊥PC,

在Rt△PCB中,CM=MB,所以CM=AM.

在等腰三角形AMC中,AN·MC=

.   ∴AB=2,

故所求的二面角的大小为

方法二:因为PA⊥PD,PA⊥AB,AD⊥AB,以A为坐标原点AD长为单位长度,如图建立空间直角坐标系,则各点坐标为

A(0,0,0)B(0,2,0),C(1,1,0),D(1,0,0),P(0,0,1),M(0,1,.

(Ⅰ)证明:因

由题设知AD⊥DC,且AP与AD是平面PAD内的两条相交直线,由此得DC⊥面PAD.

又DC在面PCD上,故面PAD⊥面PCD.

  (Ⅱ)解:因

.

故AC与PB所成的角的大小为

(Ⅲ)解:在MC上取一点N(xyz),则存在使

要使

为所求二面角的平面角.

(本题也可通过求两个平面的法向量所成角来确定二面角的平面角)

  • 答案
关闭