19.(本小题满分12分)
已知{
}是公比为q的等比数列,且
成等差数列.
(Ⅰ)求q的值;
(Ⅱ)设{
}是以2为首项,q为公差的等差数列,其前n项和为Sn,当n≥2时,比较Sn与bn的大小,并说明理由.
解:(Ⅰ)由题意得:2a2=a1+a2,即2a2q2=a1+a1q,,∵a1≠0,∴2q2-q-1=0,∴q=1或q=![]()
(Ⅱ)若q=1,则
.
当n≥2时,
,故![]()
若q=
,则
,
当n≥2时,
,
故对于n∈N+,当2≤n≤9时,Sn>bn;当n=10时, Sn=bn;当n≥11时, Sn<bn
- 答案