(17)(本小题满分12分)

,求

(1)

(2)若点

(18)(本小题满分12分)

设等比数列的前n项和为

(19)(本小题满分12分)

某批产品成箱包装,每箱5件,一用户在购进该批产品前先取出3箱,再从每箱中任意出取2件产品进行检验。设取出的第一、二、三箱中分别有0件、1件、2件二等品,其余为一等品。

(I)求取6件产品中有1件产品是二等品的概率。

(II)若抽检的6件产品中有2件或2件以上二等品,用户就拒绝购买这批产品,求这批产品被用户拒绝的概率。

(20)(本小题12分)

如图,在直三棱柱中,分别为的中点。

(I)证明:ED为异面直线的公垂线;

(II)设求二面角的大小

(21)(本小题满分为14分)

,函数的解集为A,,求实数的取值范围。

(22)(本小题满分12分)

已知抛物线的焦点为F,A、B是抛物线上的两动点,且过A、B两点分别作抛物线的切线,设其交点为M。

(I)证明为定值;

(II)设的面积为S,写出的表达式,并求S的最小值。

普通高等学校招生全国统一考试(全国II卷)

  • 答案
关闭