20.解法一: (Ⅰ)由已知l2⊥MN, l2l1 , MN∩l1 =M, 可得l2⊥平面ABN.由已知MN⊥l1 , AM=MB=MN,可知AN=NB且AN⊥NB. 又AN为AC在平面ABN内的射影.

∴AC⊥NB

(Ⅱ)∵Rt△CAN≌Rt△CNB, ∴AC=BC,又已知∠ACB=60°,因此△ABC为正三角形.

∵Rt△ANB≌Rt△CNB, ∴NC=NA=NB,因此N在平面ABC内的射影H是正三角形ABC的中心,连结BH,∠NBH为NB与平面ABC所成的角.

在Rt△NHB中,cos∠NBH= = = .

解法二: 如图,建立空间直角坐标系M-xyz.令MN=1, 则有A(-1,0,0),B(1,0,0),N(0,1,0),

(Ⅰ)∵MN是 l1l2的公垂线, l1l2, ∴l2⊥平面ABN. l2平行于z轴. 故可设C(0,1,m).于是 =(1,1,m), =(1,-1,0). ∴·=1+(-1)+0=0  ∴AC⊥NB.

(Ⅱ)∵ =(1,1,m), =(-1,1,m), ∴||=||, 又已知∠ACB=60°,∴△ABC为正三角形,AC=BC=AB=2. 在Rt△CNB中,NB=, 可得NC=,故C(0,1, ).

连结MC,作NH⊥MC于H,设H(0,λ, λ) (λ>0). ∴=(0,1-λ,-λ),

=(0,1, ). · = 1-λ-2λ=0, ∴λ= ,

∴H(0, , ), 可得=(0,, - ), 连结BH,则=(-1,, ),

∵·=0+ - =0, ∴⊥, 又MC∩BH=H,∴HN⊥平面ABC,

∠NBH为NB与平面ABC所成的角.又=(-1,1,0),

∴cos∠NBH= =  =

  • 答案
关闭