闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙鍔ゆ繝鈧柆宥呯劦妞ゆ帒鍊归崵鈧柣搴㈠嚬閸欏啫鐣峰畷鍥ь棜閻庯絻鍔嬪Ч妤呮⒑閸︻厼鍔嬮柛銊ョ秺瀹曟劙鎮欏顔藉瘜闂侀潧鐗嗗Λ妤冪箔閸屾粎纾奸柍褜鍓氱粭鐔煎焵椤掆偓閻e嘲饪伴崼顐f櫍闂佺粯鍨靛Λ娆戔偓闈涚焸濮婃椽妫冨☉姘暫濠碘槅鍋呴〃鍡涘箞閵婎煈妲剧紓浣介哺鐢繝骞冮埡鍛闁肩⒈鍏涚槐婵嬫⒒娴h櫣甯涘〒姘殜瀹曟娊鏁愰崱妯哄伎闂侀€炲苯澧撮柡灞炬礋瀹曠厧鈹戦崶鑸碉骏闂備礁鎲¤摫闁圭懓娲濠氬焺閸愩劎绐為柣蹇曞仦閸ㄦ繂鈻介鍛瘈闁靛繈鍨洪崵鈧┑鈽嗗亝缁诲倿鎮惧畡鎵虫斀闁糕檧鏅涢幃鎴︽⒑缁洖澧查柛鏃€甯為懞杈ㄧ節濮橆厸鎷洪梺鍛婄箓鐎氼剟鍩€椤掍焦鍊愰柟顔矫埞鎴犫偓锝呯仛閺呮粌顪冮妶鍡楀闁稿﹥顨堟竟鏇熺附缁嬭法楠囬梺鍓插亝缁嬫垶淇婇悾灞稿亾鐟欏嫭绀€闁活剙銈搁崺鈧い鎺戝枤濞兼劖绻涢崣澶呯細闁轰緡鍣i獮鎺懳旂€n剛鈼ゆ繝鐢靛█濞佳囶敄閹版澘鏋侀柛鏇ㄥ灡閻撱垺淇婇娆掝劅婵℃彃鍢查…璺ㄦ喆閸曨剛顦板┑顔硷攻濡炶棄鐣烽妸锔剧瘈闁告洦鍘剧粣妤呮⒒娴e懙鍦偓娑掓櫆缁绘稒绻濋崶褏鐣鹃柣蹇曞仩琚欓柡瀣叄閺岀喖骞嗚閸ょ喖鏌涘鈧禍璺侯潖濞差亜浼犻柛鏇ㄥ墮閸嬪秹姊洪崨濠冪叆闁活厼鍊块獮鍐潨閳ь剟骞冮埡鍛仺闁汇垻顣槐鏌ユ⒒娴h櫣甯涢柣鐔村灲瀹曟垿骞樼紒妯煎幈闂侀潧枪閸庢娊宕洪敐鍥e亾濞堝灝鏋涙い顓㈡敱娣囧﹪骞栨担鍝ュ幐闂佺ǹ鏈惌顔捐姳娴犲鈷掑ù锝呮嚈瑜版帒瀚夋い鎺戝€婚惌娆撴煙鏉堟儳鐦滈柡浣稿€块弻銊╂偆閸屾稑顏�濠电姷鏁告慨鐑藉极閸涘﹥鍙忛柣鎴f閺嬩線鏌涘☉姗堟敾闁告瑥绻橀弻锝夊箣閿濆棭妫勯梺鍝勵儎缁舵岸寮诲☉妯锋婵鐗婇弫楣冩⒑閸涘﹦鎳冪紒缁橈耿瀵鏁愭径濠勵吅闂佹寧绻傚Λ顓炍涢崟顖涒拺闁告繂瀚烽崕搴g磼閼搁潧鍝虹€殿喖顭烽幃銏ゅ礂鐏忔牗瀚介梺璇查叄濞佳勭珶婵犲伣锝夘敊閸撗咃紲闂佽鍨庨崘锝嗗瘱缂傚倷绶¢崳顕€宕归幎钘夌闁靛繒濮Σ鍫ユ煏韫囨洖啸妞ゆ挻妞藉娲传閸曨偅娈滈梺绋款儐閹瑰洭寮诲☉銏犖ч柛娑卞瀺瑜旈弻锛勪沪閸撗勫垱婵犵绱曢崗姗€銆佸▎鎾村亗閹煎瓨蓱鐎氫粙姊婚崒娆愮グ婵℃ぜ鍔庣划鍫熸媴鐠囥儲妞介、姗€濮€閻樼儤鎲伴梻浣告惈濞村嫮妲愰弴銏″仾闁逞屽墴濮婃椽宕崟顒€绐涢梺绋库看閸嬪﹥淇婇悜鑺ユ櫆閺夌偞澹嗛惄搴ㄦ⒒娴g懓顕滄俊顐$窔椤㈡俺顦查柍璇茬Т椤撳吋寰勭€n剙骞嶆俊鐐€栧濠氭偤閺傚簱鏋旀繝濠傛噳閸嬫挾鎲撮崟顒傤槰濡炪們鍔屽Λ妤咁敋閵夆晛绀嬫い鎺戝€婚惁鍫熺箾鏉堝墽鍒板鐟帮工铻炴繝濠傜墛閳锋帡鏌涚仦鎹愬闁逞屽墴椤ユ挾鍒掗崼鐔虹懝闁逞屽墴閻涱喗寰勯幇顒備紜闁烩剝甯婇悞锕€顪冩禒瀣瀬闁告劦鍠栫壕鍏兼叏濡鏁剧紒鍗炲船閳规垿鎮╅鑲╀紘闂佺硶鏅滈悧鐘茬暦濠靛鍗抽柕蹇曞Т瀵兘姊洪棃娑辨Т闁哄懏绮撻幃锟犳偄閸忚偐鍘甸梻渚囧弿缁犳垿寮稿☉銏$厱闁哄倹顑欓崕鏃堟煛鐏炵晫效闁哄被鍔庨埀顒婄秵娴滅偞瀵煎畝鍕拺閻犲洠鈧櫕鐏堢紓鍌氱Т閿曨亪鎮伴鐣岀懝闁逞屽墴閻涱噣骞掑Δ鈧粻锝嗙節閸偄濮夐柍褜鍓濆▍鏇犳崲濠靛鍋ㄩ梻鍫熺◥缁爼姊洪悷鏉挎毐缂佺粯锚閻e嘲鈹戦崱蹇旂€婚梺瑙勫劤閻ゅ洭骞楅弴銏♀拺缂備焦蓱閳锋帡鏌涘Ο鐘叉噽閻棝鏌涢弴銊ョ仭闁绘挸绻橀弻娑㈩敃閿濆洨鐣哄銈冨劜缁秹濡甸崟顔剧杸闁靛绠戦锟�

2006年佛山市高考模拟考试

数    学

本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页.满分150分.考试用时120分钟.

 

注意事项:

1. 答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号填写在答题

卡上.用2B铅笔将答题卡试卷类型(A)填涂在答题卡上.在答题卡右上角的“试

室号”和“座位号”栏填写试室号、座位号,并用2B铅笔将相应的试室号、座

位号信息点涂黑.

2. 选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如

需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.

3. 非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区

域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使

用铅笔和涂改液.不按以上要求作答的答案无效.

4. 考生必须保持答题卡的整洁,考试结束后,将试卷和答题卡一并交回.

 

参考公式:

              如果事件AB互斥,那么P(A+B)=P(A)+P(B).

 

              如果事件A、B相互独立,那么P(A?B)=P(A)?P(B).

 

第Ⅰ卷   选择题(共50分)

一、选择题:本题共10小题,每小题5分,共50分.在每小题给出的四个选项中,有且

1. 不等式的解集是(    ).

试题详情

       A.       B. C.       D.

试题详情

2. 向量a = (1,2),b = (x,1),c = a + bd = a - b,若c//d,则实数x的值等于(    ).

试题详情

A.           B.           C.             D.

试题详情

3. 已知下列命题(其中为直线,为平面):

① 若一条直线垂直于平面内无数条直线,则这条直线与这个平面垂直;

② 若一条直线平行于一个平面,则垂直于这条直线的直线必垂直于这个平面;

试题详情

③ 若,则

试题详情

④ 若,则过有唯一垂直.

上述四个命题中,真命题是(    ).

      A.①,②        B.②,③         C.②,④        D.③,④

试题详情

4. 已知,则的值是(    ).

试题详情

A.              B.              C.           D.

试题详情

5. 下列各组命题中,满足“‘pq’为真、‘pq’为假、‘非p’为真”的是(    ).

试题详情

A.  p;    q.

试题详情

B.  p:在△ABC中,若,则

试题详情

q在第一象限是增函数.

试题详情

C.  p

试题详情

q:不等式的解集是.

试题详情

D.  p:圆的面积被直线平分;

试题详情

q:椭圆的一条准线方程是.

试题详情

6. 若的反函数为,且,则的最小值是(    ).

试题详情

A.               B.            C.              D.

试题详情

7. 设复数,则的展开式(按升幂排列)的第5项是(    ).

试题详情

       A.           B.         C.            D.

试题详情

8.  设动点A, B(不重合)在椭圆上,椭圆的中心为O,且

O到弦AB的距离OH等于(    ).

试题详情

    A.          B.            C.             D.

试题详情

9. 函数都有.若

试题详情

则数列的前n项和的极限是(    ).

试题详情

    A.              B.              C.             D.

试题详情

10.某大楼共有20层,有19人在第1层上了电梯,他们分别要到第2层至第20层,每

层1人.电梯只在中间某一层停1次,可知电梯在第3层停的话,则第3层下的人最

满意,其中有1人要下到第2层,有17人要从第3层上楼,就不太满意了.假设乘客

每向下走一层的不满意度为1,向上走一层的不满意度为2,所有的不满意度之和为S

为使S最小,则电梯应当停在(    ).

       A.第12层              B.第13层              C.第14层              D.第15层

第Ⅱ卷   非选择题(共100分)

 

试题详情

二.填空题:本大题共4小题,每小题5分,共20分.

11.已知R上的连续函数,则            .

试题详情

12.已知的最大值是     的最小值是     .

试题详情

13.设A={1, 2, 3, 4, 5, 6},B={1, 3, 5, 7, 9}, 集合C是从AB中任取2个元素组成的集

试题详情

合,则的概率是____________.

试题详情

14、观察下列的图形中小正方形的个数,则第n个图中有               个小正方形.

试题详情

 

 

 

 

 

 

试题详情

三.解答题:本大题共6小题,共80分.解答应写出文字说明,证明过程或演算步骤.

15.(本小题满分12分)

试题详情

已知函数)的图象在轴右侧的第一个最高点为

试题详情

,与轴在原点右侧的第一个交点为.

试题详情

(1) 求函数的解析式;

试题详情

(2) 函数的图象是由的图象通过怎样的变换而得到的?

试题详情

16.(本小题满分12分)

下表为某班英语及数学成绩的分布.学生共有50人,成绩分为5个档次,如表中所示

英语成绩为5分、数学成绩为4分的学生有3人。若在全班学生中任选一人,其英语

试题详情

     

试题详情

数  学

5

4

3

2

1

 

5

1

3

1

0

1

4

1

0

7

5

1

3

2

1

0

9

3

2

1

b

6

0

a

1

0

0

1

1

3

试题详情

语成绩记为,数学成绩记为.

 

试题详情

(1) 的概率是多少?

概率是多少?

试题详情

(2) 若的期望为,试确定a,b的值.

 

试题详情

17.(本小题满分14分)

试题详情

四棱锥PABCD中,侧面PDC是边长为2的正三角形,且与底面垂直,底面ABCD

试题详情

是∠ADC的菱形,MPB的中点,QCD的中点.

(1) 求证:PACD

(2) 求AQ与平面CDM所成的角.

 

 

试题详情

18.(本小题满分14分)

试题详情

已知函数的图象为曲线E.

(1) 若曲线E上存在点P,使曲线EP点处的切线与x轴平行,求a,b的关系;

试题详情

(2) 说明函数可以在时取得极值,并求此时a,b的值;

试题详情

(3) 在满足(2)的条件下,恒成立,求c的取值范围.

试题详情

19.(本小题满分14分)

试题详情

已知椭圆过点,且与的交于,.

试题详情

(1) 用表示,的横坐标;

试题详情

(2) 设以为焦点,过点,且开口向左的抛物线的顶点坐标为,求实数

的取值范围.

试题详情

20.(本小题满分14分)

试题详情

f1(x)=,定义fn+1 (x)= f1fn(x)],an =nN*).

(1) 求数列{an}的通项公式;

试题详情

(2) 若Qn=nN*),试比较9T2n

Qn的大小,并说明理由.

 

 

 

 

 

 

 

2006年佛山市高考模拟考试

试题详情

 

一、选择题:本大题共10小题,每小题5分,共50分.

题号

1

2

3

4

5

6

7

8

9

10

答案

D

A

D

A

C

B

A

C

B

C

 

二、填空题:本大题共4小题,每小题5分,共20分.其中12题的第一个空3分,第二

个空2分.

11..     12..     13..     14..

三、解答题:本大题共6小题,共80分.解答应写出文字说明、演算步骤或推证过程.

15.解:(1) 根据题意,可知,即.  ……………………………2分

于是.  ………………………………………………………………………………………………3分

将点代入,得

.     …………………………………………………………5分

满足的最小正数.  ……………………………………………………………7分

从而所求的函数解析式是.    ……………………………………………8分

(2)略.(振幅变换1分.周期变换、相位变换做对一个2分,全对3分)   ……12分

16.解:显然是随机变量.

(1)..  …………………………………6分

    (2)由的期望为,得

,即. …………………9分

    根据表中数据,得,即. ………………………………………………11分

    联立解得. …………………………………………………………………………………………12分

17.解:(1)连结PQAQ.

∵△PCD为正三角形,  ∴PQCD.

∵底面ABCD是∠ADC的菱形,∴AQCD.

CD⊥平面PAQ.  ………………………………………………………………………………………………4分

PACD.

(2)设平面CDMPAN,∵CD//AB,  ∴CD//平面PAB.  ∴CD//MN.

由于MPB的中点,∴NPA的中点. 又PD=CD=AD,∴DNPA.

    由(1)可知PACD,  ∴PA⊥平面CDM.  ………………………………8分

∴平面CDM⊥平面PAB.

PA⊥平面CDM,联接QNQA,则ÐAQNAQ与平面CDM所成的角.  ……10分

在RtDPMA中,AM=PM=

AP=,∴AN=,sinÐAQN==.

∴ÐAQN =45°.…………………………………………………14分

(2)另解(用空间向量解):

由(1)可知PQCDAQCD.

又由侧面PDC⊥底面ABCD,得PQAQ.

因此可以如图建立空间直角坐标系. ………………………………………………………6分

易知P(0 , 0 ,)、A(, 0 , 0)、B(, 2 , 0)、

C(0 , 1 , 0)、D(0 , -1 , 0). ………………………………………………………………………………7分

①由=(, 0 , -),=(0 , -2 , 0),得×=0.

PACD. ……………………………………………………………………………………………………………9分

②由M, 1 , -),=(, 0 , -),得×=0.

PACM . ……………………………………………………………………10分

PA⊥平面CDM,即平面CDM⊥平面PAB.

从而就是平面CDM的法向量.………………………12分

AQ与平面所成的角为q

则sinq =|cos<,>|=.

AQ与平面所成的角为45°.……………………14分

18.解:(1)根据题意,有解,

. ……………………………………………………………………………3分

(2)若函数可以在时取得极值,

有两个解,且满足.

易得.  ………………………………………………………………………………………………6分

(3)由(2),得. ………………………………………………………………7分

根据题意,()恒成立.  ……………………………………………9分

∵函数)在时有极大值(用求导的方法),

且在端点处的值为.

∴函数)的最大值为.   …………………………13分

所以. …………………………………………………………………………………………………………14分

 

19.解:(1)由于椭圆过点,故.…………………………………1分

,横坐标适合方程

解得().………………………………………………………4分

,横坐标是().……………………………………5分

(2)根据题意,可设抛物线方程为.  …………………6分

,∴.………………………………………………………………7分

(等同于,坐标())代入式抛物线方

程,得. ……………………………………9分

.……………………………………10分

内有根(并且是单调递增函数),

………………………………………………………………13分

解得. …………………………………………………………………………………………14分

20.解:(1)∵f1(0)=2,a1==fn+1(0)= f1fn(0)]=, …………2分

an+1==== -= -an. ……………4分

∴数列{an}是首项为,公比为-的等比数列,∴an=()n-1.  ………………5分

(2)∵T2 n = a1+2a 2+3a 3+…+(2n-1)a 2 n-1+2na 2 n

T2 n= (-a1)+(-)2a 2+(-)3a 3+…+(-)(2n-1)a2 n1+2na2 n

= a 2+2a 3+…+(2n-1)a2 nna2 n.

两式相减,得T2 n= a1+a2+a 3+…+a2 n+na2 n.  ……………………………………………………7分

T2n =+n×(-)2n-1=-(-)2n+(-)2n-1.

T2n =-(-)2n+(-)2n-1=(1-). ……………9分∴9T2n=1-.

Qn=1-, ……………………………………………………………………………………………10分

n=1时,22 n= 4,(2n+1)2=9,∴9T2 nQ n;  ……………………………………………………11分

n=2时,22 n=16,(2n+1)2=25,∴9T2 nQn;   …………………………………………………12分

n≥3时,

∴9T2 nQ n. …………………………………………………………………………………………………………14分

 


同步练习册答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙鍔ょ紓宥咃躬瀵鏁愭径濠勵吅闂佹寧绻傞幉娑㈠箻缂佹ḿ鍘遍梺闈涚墕閹冲酣顢旈銏$厸閻忕偠顕ч埀顒佺箓閻g兘顢曢敃鈧敮闂佹寧妫佹慨銈夋儊鎼粹檧鏀介柣鎰▕閸ょ喎鈹戦鐐毈闁硅櫕绻冮妶锝夊礃閵娧冨箣闂備胶鎳撻顓㈠磻濞戞氨涓嶉柣妯肩帛閳锋垹绱掔€n亜鐨¢柡鈧紒妯镐簻闁靛ǹ鍎查ˉ銏☆殽閻愯尙澧﹀┑鈩冪摃椤︻噣鏌涚€n偅宕屾俊顐㈠暙閳藉鈻庤箛鏃€鐣奸梺璇叉唉椤煤閺嵮屽殨闁割偅娲栫粻鐐烘煏婵炲灝鍔存繛鎾愁煼閹綊宕堕鍕婵犮垼顫夊ú鐔奉潖缂佹ɑ濯撮柧蹇曟嚀缁椻剝绻涢幘瀵割暡妞ゃ劌锕ら悾鐑藉级鎼存挻顫嶅┑顔矫ぐ澶岀箔婢跺ň鏀介柣鎰綑閻忥箓鎳i妶鍡曠箚闁圭粯甯炴晶娑氱磼缂佹ḿ娲寸€规洖宕灒闁告繂瀚峰ḿ鏃€淇婇悙顏勨偓鏇犳崲閹烘绐楅柡宓本缍庣紓鍌欑劍钃卞┑顖涙尦閺屻倝骞侀幒鎴濆Б闂侀潧妫楅敃顏勵潖濞差亝顥堥柍鍝勫暟鑲栫紓鍌欒兌婵敻骞戦崶顒佸仒妞ゆ棁娉曢悿鈧┑鐐村灦閻燂箑鈻嶉姀銈嗏拺閻犳亽鍔屽▍鎰版煙閸戙倖瀚� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐劤缂嶅﹪寮婚悢鍏尖拻閻庨潧澹婂Σ顔剧磼閻愵剙鍔ょ紓宥咃躬瀵鎮㈤崗灏栨嫽闁诲酣娼ф竟濠偽i鍓х<闁绘劦鍓欓崝銈囩磽瀹ュ拑韬€殿喖顭烽幃銏ゅ礂鐏忔牗瀚介梺璇查叄濞佳勭珶婵犲伣锝夘敊閸撗咃紲闂佺粯鍔﹂崜娆撳礉閵堝洨纾界€广儱鎷戦煬顒傗偓娈垮枛椤兘骞冮姀銈呯閻忓繑鐗楃€氫粙姊虹拠鏌ュ弰婵炰匠鍕彾濠电姴浼i敐澶樻晩闁告挆鍜冪床闂備胶绮崝锕傚礈濞嗘垹鐭嗛柛鎰ㄦ杺娴滄粓鏌¢崶褎顥滄繛灞傚€濋幃鈥愁潨閳ь剟寮婚悢鍛婄秶濡わ絽鍟宥夋⒑缁嬫鍎愰柛鏃€鐟╁璇测槈濡攱鐎婚棅顐㈡祫缁茬偓鏅ラ梻鍌欐祰椤曟牠宕板Δ鍛仭鐟滃繐危閹版澘绠婚悗娑櫭鎾绘⒑閸涘﹦绠撻悗姘卞厴閸┾偓妞ゆ巻鍋撻柣顓炲€垮璇测槈閵忕姈鈺呮煏婢诡垰鍟伴崢浠嬫煟鎼淬埄鍟忛柛鐘崇墵閳ワ箓鏌ㄧ€b晝绠氶梺褰掓?缁€渚€鎮″☉銏$厱閻忕偛澧介悡顖滅磼閵娿倗鐭欐慨濠勭帛閹峰懘宕ㄩ棃娑氱Ш鐎殿喚鏁婚、妤呭磼濠婂懐鍘梻浣侯攰閹活亞鈧潧鐭傚顐﹀磼閻愬鍙嗛梺缁樻礀閸婂湱鈧熬鎷�