1.已知集合A=-1,3,2-1,集合B=3,.若BA,则实数=        .

试题详情>>

2.已知圆-4-4+=0的圆心是点P,则点P到直线--1=0的距离是       .

试题详情>>

3.若函数=(>0,且≠1)的反函数的图像过点(2,-1),则=       .

试题详情>>

4.计算:=                 .

试题详情>>

5.若复数同时满足-=2,=(为虚数单位),则=               .

试题详情>>

6.如果=,且是第四象限的角,那么=                   .

试题详情>>

7.已知椭圆中心在原点,一个焦点为F(-2,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是                              .

试题详情>>

8.在极坐标系中,O是极点,设点A(4,),B(5,-),则△OAB的面积是          .

试题详情>>

10.如果一条直线与一个平面垂直,那么,称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是                 .

试题详情>>

11.若曲线=||+1与直线=+没有公共点,则、分别应满足的条件是                  .

试题详情>>

12.三个同学对问题“关于的不等式+25+|-5|≥在[1,12]上恒成立,求实数的取值范围”提出各自的解题思路.

甲说:“只须不等式左边的最小值不小于右边的最大值”.

乙说:“把不等式变形为左边含变量的函数,右边仅含常数,求函数的最值”.

丙说:“把不等式两边看成关于的函数,作出函数图像”.

参考上述解题思路,你认为他们所讨论的问题的正确结论,即的取值范围是          .

 

试题详情>>

13.如图,在平行四边形ABCD中,下列结论中错误的是         [答](      )

(A)=;(B)+=;

(C)-=;(D)+=.

试题详情>>

14.若空间中有四个点,则“这四个点中有三点在同一直线上”是“这四个点在同一平面上”的                                                        [答](      )

(A)充分非必要条件;(B)必要非充分条件;(C)充要条件;(D)非充分非必要条件.

试题详情>>

15.若关于的不等式≤+4的解集是M,则对任意实常数,总有[答](      )

(A)2∈M,0∈M; (B)2M,0M; (C)2∈M,0M; (D)2M,0∈M.

①若==0,则“距离坐标”为(0,0)的点

有且仅有1个;

②若=0,且+≠0,则“距离坐标”为

(,)的点有且仅有2个;

③若≠0,则“距离坐标”为(,)的点有且仅有4个.

上述命题中,正确命题的个数是                            [答](      )

试题详情>>

(A)0; (B)1; (C)2; (D)3.

 

试题详情>>

17.(本题满分12分)

求函数=2+的值域和最小正周期.

[解]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

试题详情>>

18.(本题满分12分)

如图,当甲船位于A处时获悉,在其正东方向相距20海里的B处有一艘渔船遇险等待营救.甲船立即前往救援,同时把消息告知在甲船的南偏西30,相距10海里C处的乙船,试问乙船应朝北偏东多少度的方向沿直线前往B处救援(角度精确到1)?

[解]

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

试题详情>>

19.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分)

试题详情>>

在四棱锥P-ABCD中,底面是边长为2的菱形,∠DAB=60,对角线AC与BD相交于点O,PO⊥平面ABCD,PB与平面ABCD所成的角为60.

(1)求四棱锥P-ABCD的体积;

(2)若E是PB的中点,求异面直线

DE与PA所成角的大小(结果用反

三角函数值表示).

[解](1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(2)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

试题详情>>

20.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分)

在平面直角坐标系O中,直线与抛物线=2相交于A、B两点.

(1)求证:“如果直线过点T(3,0),那么=3”是真命题;

(2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由.

[解](1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(2)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

试题详情>>

21.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分)

试题详情>>

已知有穷数列共有2项(整数≥2),首项=2.设该数列的前项和为,且=+2(=1,2,┅,2-1),其中常数>1.

(1)求证:数列是等比数列;

(2)若=2,数列满足=(=1,2,┅,2),求数列的通项公式;

(3)若(2)中的数列满足不等式|-|+|-|+┅+|-|+|-|≤4,求的值.

[解](1)

 

 

 

 

 

 

 

 

 

 

 

(2)

 

 

 

 

 

 

 

 

 

 

 

 

(3)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

试题详情>>

22.(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分)

已知函数=+有如下性质:如果常数>0,那么该函数在0,上是减函数,在,+∞上是增函数.

(1)如果函数=+(>0)的值域为6,+∞,求的值;

(2)研究函数=+(常数>0)在定义域内的单调性,并说明理由;

(3)对函数=+和=+(常数>0)作出推广,使它们都是你所推广的函数的特例.研究推广后的函数的单调性(只须写出结论,不必证明),并求函数=+(是正整数)在区间[,2]上的最大值和最小值(可利用你的研究结论).

[解](1)

 

 

 

 

 

 

 

 

 

 

 

(2)

 

 

 

 

 

 

 

 

 

 

 

 

(3)

 

 

 

 

 

试题详情>>
关闭