1.两个分别带有电荷量
和+
的相同金属小球(均可视为点电荷),固定在相距为
的两处,它们间库仑力的大小为
。两小球相互接触后将其固定距离变为
,则两球间库仑力的大小为
A.
B.
C.
D.![]()
2.用一根长
,为使绳不断裂,画框上两个挂钉的间距最大为(
取
)
A.
B.![]()
C.
D.![]()
3.英国《新科学家(New Scientist)》杂志评选出了2008年度世界8项科学之最,在XTEJ1650-500双星系统中发现的最小黑洞位列其中,若某黑洞的半径
约
和半径
的关系满足
(其中
为光速,
为引力常量),则该黑洞表面重力加速度的数量级为
A.
B.![]()
C.
D.![]()
4.在无风的情况下,跳伞运动员从水平飞行的飞机上跳伞,下落过程中受到空气阻力,下列描绘下落速度的水平分量大小
、竖直分量大小
与时间
的图像,可能正确的是
![]()
A B C D
5.在如图所示的闪光灯电路中,电源的电动势为
,电容器的电容为
。当闪光灯两端电压达到击穿电压
时,闪光灯才有电流通过并发光,正常工作时,闪光灯周期性短暂闪光,则可以判定
A.电源的电动势
一定小于击穿电压![]()
B.电容器所带的最大电荷量一定为![]()
C.闪光灯闪光时,电容器所带的电荷量一定增大
D.在一个闪光周期内,通过电阻
的电荷量与通过闪光灯的电荷量一定相等
6.如图所示,理想变压器的原、副线圈匝数比为1:5,原线圈两端的交变电压为
氖泡在两端电压达到100V时开始发光,下列说法中正确的有
![]()
A.开关接通后,氖泡的发光频率为100Hz
B.开关接通后,电压表的示数为100 V
C.开关断开后,电压表的示数变大
D.开关断开后,变压器的输出功率不变
7.如图所示,以
匀速行驶的汽车即将通过路口,绿灯还有2 s将熄灭,此时汽车距离停车线
,减速时最大加速度大小为
。此路段允许行驶的最大速度为
,下列说法中正确的有
![]()
A.如果立即做匀加速运动,在绿灯熄灭前汽车可能通过停车线
B.如果立即做匀加速运动,在绿灯熄灭前通过停车线汽车一定超速
C.如果立即做匀减速运动,在绿灯熄灭前汽车一定不能通过停车线
D.如果距停车线
处减速,汽车能停在停车线处
8.空间某一静电场的电势
在
轴上分布如图所示,
轴上两点B、C的电场强度在
方向上的分量分别是
、
,下列说法中正确的有
A.
的大小大于
的大小
B.
的方向沿
轴正方向
C.电荷在
点受到的电场力在
方向上的分量最大
D.负电荷沿
轴从
移到
的过程中,电场力先做正功,后做负功
9.如图所示,两质量相等的物块A、B通过一轻质弹簧连接,B足够长、放置在水平面上,所有接触面均光滑。弹簧开始时处于原长,运动过程中始终处在弹性限度内。在物块A上施加一个水平恒力,A、B从静止开始运动到第一次速度相等的过程中,下列说法中正确的有
![]()
A.当A、B加速度相等时,系统的机械能最大
B.当A、B加速度相等时,A、B的速度差最大
C.当A、B的速度相等时,A的速度达到最大
D.当A、B的速度相等时,弹簧的弹性势能最大
【必做题】
10.(8分)有一根圆台状均匀质合金棒如图所示,某同学猜测其电阻的大小与该合金棒的电阻率ρ、长度L和两底面直径d、D有关。他进行了如下实验:
![]()
(1)用游标卡尺测量合金棒的两底面直径d、D和长度L。图中游标卡尺(游标尺上有20个等分刻度)的读数L=________cm.
![]()
(2)测量该合金棒电阻的实物电路如图所示(相关器材的参数已在图中标出)。该合金棒的电阻约为几个欧姆。图中有一处连接不当的导线是__________.(用标注在导线旁的数字表示)
(3)改正电路后,通过实验测得合金棒的电阻R=6.72Ω.根据电阻定律计算电阻率为ρ、长为L、直径分别为d和D的圆柱状合金棒的电阻分别为Rd=13.3Ω、RD=3.38Ω.他发现:在误差允许范围内,电阻R满足R2=Rd・RD,由此推断该圆台状合金棒的电阻R=_______.(用ρ、L、d、D表述)
11.(10分)“探究加速度与物体质量、物体受力的关系”的实验装置如图所示.
(1)在平衡小车与桌面之间摩擦力的过程中,打出了一条纸带如图所示。计时器打点的时间间隔为0.02s.从比较清晰的点起,每5个点取一个计数点,量出相邻计数点之间的距离。该小车的加速度a=______m/s2.(结果保留两位有效数字)
![]()
(2)平衡摩擦力后,将5个相同的砝码都放在小车上.挂上砝码盘,然后每次从小车上取一个砝码添加到砝码盘中,测量小车的加速度。小车的加速度a与砝码盘中砝码总重力F的实验数据如下表:
砝码盘中砝码总重力F(N)
0.196
0.392
0.588
0.784
0.980
加速度a(m・s-2)
0.69
1.18
1.66
2.18
2.70
请根据实验数据作出a-F的关系图像.
(3)根据提供的实验数据作出的
-F图线不通过原点,请说明主要原因。
12.[选做题]本题包括
、
、C三个小题,请选定其中两题,并在相应的答题区域内作答。若三题都做,则按A、B两题评分
A.(选修模块3―3)(12分)
(1)若一气泡从湖底上升到湖面的过程中温度保持不变,则在此过程中关于气泡中的气体, 下列说法正确的是 。(填写选项前的字母)
(A)气体分子间的作用力增大 (B)气体分子的平均速率增大
(C)气体分子的平均动能减小 (D)气体组成的系统地熵增加
(2)若将气泡内的气体视为理想气体,气泡从湖底上升到湖面的过程中,对外界做了0.6J的功,则此过程中的气泡 (填“吸收”或“放出”)的热量是 J。气泡到达湖面后,温度上升的过程中,又对外界做了0.1J的功,同时吸收了0.3J的热量,则此过程中,气泡内气体内能增加了 J
(3)已知气泡内气体的密度为
,平均摩尔质量为
,取气体分子的平均直径为
,若气泡内的气体能完全变为液体,请估算液体体积与原来气体体积的比值。(结果保留一位有效数字)
B.(选修模块3―4)(12分)
(1)如图所示,强强乘坐速度为0.9
(
为光速)的宇宙飞船追赶正前方的壮壮,壮壮的飞行速度为0.5
,强强向壮壮发出一束光进行联络,则壮壮观测到该光束的传播速度为 。(填写选项前的字母)
(A)
(2)在
时刻,质点A开始做简谐运动,其振动图象如图所示。
质点A振动的周期是
s;
时,质点A的运动沿
轴的 方向(填“正”或“负”);质点B在波的传播方向上与A相距
时,质点B偏离平衡位置的位移是 cm
(3)图是北京奥运会期间安置在游泳池底部的照相机拍摄的一张照片,照相机的镜头竖直向上。照片中,水立方运动馆的景象呈限在半径
的圆型范围内,水面上的运动员手到脚的长度
,若已知水的折射率为
,请根据运动员的实际身高估算该游泳池的水深
,(结果保留两位有效数字)
![]()
C.(选修模块3―5)(12分)
在
衰变中常伴有一种称为“中微子”的粒子放出。中微子的性质十分特别,因此在实验中很难探测。1953年,莱尼斯和柯文建造了一个由大水槽和探测器组成的实验系统,利用中微子与水中
的核反应,间接地证实了中微子的存在。
(1)中微子与水中的
发生核反应,产生中子(
)和正电子(
),即
中微子+
→
+![]()
可以判定,中微子的质量数和电荷数分别是 。(填写选项前的字母)
(A)0和0 (B)0和1 (C)1和 0 (D)1和1
(2)上述核反应产生的正电子与水中的电子相遇,与电子形成几乎静止的整体后,可以转变为两个光子(
),即
+![]()
2![]()
已知正电子和电子的质量都为9.1×10-31┧,反应中产生的每个光子的能量约为 J.正电子与电子相遇不可能只转变为一个光子,原因是 。
(3)试通过分析比较,具有相同动能的中子和电子的物质波波长的大小。
13.(15分)航模兴趣小组设计出一架遥控飞行器,其质量m =2┧,动力系统提供的恒定升力F =28 N。试飞时,飞行器从地面由静止开始竖直上升。设飞行器飞行时所受的阻力大小不变,g取
(1)第一次试飞,飞行器飞行t1 = 8 s 时到达高度H =
(2)第二次试飞,飞行器飞行t2 = 6 s 时遥控器出现故障,飞行器立即失去升力。求飞行器能达到的最大宽度h;
(3)为了使飞行器不致坠落到地面,求飞行器从开始下落到恢复升力的最长时间t3 。
14.(16分)1932年,劳伦斯和利文斯设计出了回旋加速器。回旋加速器的工作原理如图所示,置于高真空中的D形金属盒半径为R,两盒间的狭缝很小,带电粒子穿过的时间可以忽略不计。磁感应强度为B的匀强磁场与盒面垂直。A处粒子源产生的粒子,质量为m、电荷量为+q ,在加速器中被加速,加速电压为U。加速过程中不考虑相对论效应和重力作用。
![]()
(1)求粒子第2次和第1次经过两D形盒间狭缝后轨道半径之比;
(2)求粒子从静止开始加速到出口处所需的时间t ;
(3)实际使用中,磁感应强度和加速电场频率都有最大值的限制。若某一加速器磁感应强度和加速电场频率的最大值分别为Bm、fm,试讨论粒子能获得的最大动能E┪。
15.(16分)如图所示,两平行的光滑金属导轨安装在一光滑绝缘斜面上,导轨间距为l、足够长且电阻忽略不计,导轨平面的倾角为
,条形匀强磁场的宽度为d,磁感应强度大小为B、方向与导轨平面垂直。长度为2d的绝缘杆将导体棒和正方形的单匝线框连接在一起组成“
”型装置,总质量为m,置于导轨上。导体棒中通以大小恒为I的电流(由外接恒流源产生,图中未图出)。线框的边长为d(d < l),电阻为R,下边与磁场区域上边界重合。将装置由静止释放,导体棒恰好运动到磁场区域下边界处返回,导体棒在整个运动过程中始终与导轨垂直。重力加速度为g。
求:(1)装置从释放到开始返回的过程中,线框中产生的焦耳热Q;
(2)线框第一次穿越磁场区域所需的时间t1 ;
(3)经过足够长时间后,线框上边与磁场区域下边界的最大距离
m 。