1.复数在复平面内,z所对应的点在 ( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
2.极限存在是函数在点处连续的 ( )
A.充分而不必要的条件 B.必要而不充分的条件
C.充要条件 D.既不充分也不必要的条件
3.设袋中有80个红球,20个白球,若从袋中任取10个球,则其中恰有6个红球的概率为
( )
A. B. C. D.
4.已知m、n是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出下列四个命
题:①若; ②若;
③若;
④若m、n是异面直线,
其中真命题是 ( )
A.①和② B.①和③ C.③和④ D.①和④
5.函数的反函数是 ( )
A. B. C. D.
6.若,则的取值范围是 ( )
A. B. C. D.
7.在R上定义运算若不等式对任意实数成立,
则 ( )
A. B. C. D.
8.若钝角三角形三内角的度数成等差数列,且最大边长与最小边长的比值为m,则m的范
围是 ( )
A.(1,2) B.(2,+∞) C.[3,+∞ D.(3,+∞)
9.若直线按向量平移后与圆相切,则c的值为( )
A.8或-2 B.6或-4 C.4或-6 D.2或-8
10.已知是定义在R上的单调函数,实数,
,若,则 ( )
A. B. C. D.
11.已知双曲线的中心在原点,离心率为.若它的一条准线与抛物线的准线重合,
则该双曲线与抛物线的交点到原点的距离是 ( )
A.2+ B. C. D.21
12.一给定函数的图象在下列图中,并且对任意,由关系式得到的数列满足,则该函数的图象是 ( )
A B C D
第Ⅱ卷(非选择题 共90分)
13.的展开式中常数项是 .
14.如图,正方体的棱长为1,C、D分别是两条棱的中点,
A、B、M是顶点,那么点M到截面ABCD的距离是 .
15.用1、2、3、4、5、6、7、8组成没有重复数字的八位数,要求1和2相邻,3与4相邻,
5与6相邻,而7与8不相邻,这样的八位数共有 个.(用数字作答)
16.是正实数,设是奇函数},若对每个实数,的元素不超过2个,且有使含2个元素,则的取值范围是 .
已知三棱锥P―ABC中,E、F分别是AC、AB的中点,
△ABC,△PEF都是正三角形,PF⊥AB.
(Ⅰ)证明PC⊥平面PAB;
(Ⅱ)求二面角P―AB―C的平面角的余弦值;
(Ⅲ)若点P、A、B、C在一个表面积为12π的
球面上,求△ABC的边长.
如图,在直径为1的圆O中,作一关于圆心对称、
邻边互相垂直的十字形,其中
(Ⅰ)将十字形的面积表示为的函数;
(Ⅱ)为何值时,十字形的面积最大?最大面积是多少?
19.(本小题满分12分)
已知函数设数列}满足,数列}满足
(Ⅰ)用数学归纳法证明;
(Ⅱ)证明
20.(本小题满分12分)
(Ⅰ)已知甲、乙两种产品每一道工序的加工结
果为A级的概率如表一所示,分别求生产
出的甲、乙产品为一等品的概率P甲、P乙;
(Ⅱ)已知一件产品的利润如表二所示,用ξ、
(I)的条件下,求ξ、η的分布列及
Eξ、Eη;
(Ⅲ)已知生产一件产品需用的工人数和资金额
如表三所示.该工厂有工人40名,可用资.
金60万元.设x、y分别表示生产甲、乙产
值时,最大?最大值是多少?
(解答时须给出图示)
21.(本小题满分14分)
(Ⅰ)设为点P的横坐标,证明;
(Ⅱ)求点T的轨迹C的方程;
(Ⅲ)试问:在点T的轨迹C上,是否存在点M,
使△F1MF2的面积S=若存在,求∠F1MF2
的正切值;若不存在,请说明理由.
22.(本小题满分12分)
函数在区间(0,+∞)内可导,导函数是减函数,且 设
是曲线在点()得的切线方程,并设函数
(Ⅰ)用、、表示m;
(Ⅱ)证明:当;
(Ⅲ)若关于的不等式上恒成立,其中a、b为实数,
求b的取值范围及a与b所满足的关系.
2005年普通高等学校招生全国统一考试(辽宁卷)