有一单摆,摆球质量为m,摆长为l,最大偏角为α.摆球从最大位移位置摆到平衡位置的过程中,重力对摆球的冲量大小为多少?合外力对摆球的冲量大小为多少?
分析:求出摆球运动时间,应用冲量定义式与动量定理分析答题.
解答:解:单摆的周期T=2π
,
从最大位置到平衡位置过程中,摆球的运动时间:
t=
T=
,则重力的冲量:IG=mgt=
;
摆球下摆过程中,由动能定理得:mgl(1-cosα)=
mv2,
摆球到达底端是的速度v=
,
由动量定理可得,合外力的冲量:I=mv=m
;
答:重力对摆球的冲量大小为
;合外力对摆球的冲量大小为m
.
|
从最大位置到平衡位置过程中,摆球的运动时间:
t=
| 1 |
| 4 |
| π |
| 2 |
|
| πm |
| 2 |
| gl |
摆球下摆过程中,由动能定理得:mgl(1-cosα)=
| 1 |
| 2 |
摆球到达底端是的速度v=
| 2gl(1-cosα) |
由动量定理可得,合外力的冲量:I=mv=m
| 2gl(1-cosα) |
答:重力对摆球的冲量大小为
| πm |
| 2 |
| gl |
| 2gl(1-cosα) |
点评:本题考查了重力与合外力的冲量,应用冲量定义式、动量定理、动能定理即可正确解题.