【题目】为提倡节能减排,同时减轻居民负担,广州市积极推进“一户一表”工程非一户一表用户电费采用“合表电价”收费标准:
元
度
“一户一表”用户电费采用阶梯电价收取,其11月到次年4月起执行非夏季标准如下:
第一档 | 第二档 | 第三档 | |
每户每月用电量 | |||
电价 |
例如:某用户11月用电410度,采用合表电价收费标准,应交电费元,若采用阶梯电价收费标准,应交电费
元.
为调查阶梯电价是否能到“减轻居民负担”的效果,随机调查了该市100户的11月用电量,工作人员已经将90户的月用电量填在下面的频率分布表中,最后10户的月用电量单位:度
为:88、268、370、140、440、420、520、320、230、380.
(1)在答题卡中完成频率分布表,并绘制频率分布直方图;
根据已有信息,试估计全市住户11月的平均用电量
同一组数据用该区间的中点值作代表
;
设某用户11月用电量为x度
,按照合表电价收费标准应交
元,按照阶梯电价收费标准应交
元,请用x表示
和
,并求当
时,x的最大值,同时根据频率分布直方图估计“阶梯电价”能否给不低于
的用户带来实惠?
【答案】(1)见解析(2)324度 (3)的最大值为423,估计“阶梯电价”能给不低于
的用户带来实惠.
【解析】
(1)根据题意写出频率分布表,画出频率分布直方图即可;
(2)根据数据,同一组数据用该区间的中间值代表,计算11月的平均用电量即可;
(3)可得,
,由题列不等式,计算可得x的取值范围及x的最大值,同时可得
时的频率,比较可得答案.
解:频率分布表如下:
组别 | 月用电量 | 频数 | 频率 |
4 | |||
12 | |||
24 | |||
30 | |||
26 | |||
4 | |||
合计 | 100 | 1 |
频率分布直方图如下:
该100户用户11月的平均用电量:
度
所以估计全市住户11月的平均用电量为324度.
,
,
由,得
或
或
,
解得,
,
的最大值为423.
根据频率分布直方图,时的频率为:
,
故估计“阶梯电价”能给不低于的用户带来实惠.
科目:高中数学 来源: 题型:
【题目】中国清朝数学家李善兰在1859年翻译《代数学》中首次将“”译做:“函数”,沿用至今,为什么这么翻译,书中解释说“凡此变数中函彼变数者,则此为彼之函数”1930年美国人给出了我们课本中所学的集合论的函数定义,已知集合
,
,给出下列四个对应法则,请由函数定义判断,其中能构成从
到
的函数的是( )
A.B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公园要设计如图所示的景观窗格(其结构可以看成矩形在四个角处对称地截去四个全等的三角形所得,如图二中所示多边形),整体设计方案要求:内部井字形的两根水平横轴
米,两根竖轴
米,记景观窗格的外框(如图二实线部分,轴和边框的粗细忽略不计)总长度为
米.
(1)若,且两根横轴之间的距离为
米,求景观窗格的外框总长度;
(2)由于预算经费限制,景观窗格的外框总长度不超过米,当景观窗格的面积(多边形
的面积)最大时,给出此景观窗格的设计方案中
的大小与
的长度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在空间直角坐标系中,已知正四棱锥
的高
,点
和
分别在
轴和
轴上,且
,点
是棱
的中点.
(1)求直线与平面
所成角的正弦值;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在直角坐标系xOy中,圆C的参数方程为为参数
,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为
.
1
求圆C的普通方程和直线l的直角坐标方程;
2
设M是直线l上任意一点,过M做圆C切线,切点为A、B,求四边形AMBC面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司共有职工1500人,其中男职工1050人,女职工450人.为调查该公司职工每周平均上网的时间,采用分层抽样的方法,收集了300名职工每周平均上网时间的样本数据(单位:小时)
男职工 | 女职工 | 总计 | |
每周平均上网时间不超过4个小时 | |||
每周平均上网时间超过4个小时 | 70 | ||
总计 | 300 |
(Ⅰ)应收集多少名女职工样本数据?
(Ⅱ)根据这300个样本数据,得到职工每周平均上网时间的频率分布直方图(如图所示),其中样本数据分组区间为:,
,
,
,
,
.试估计该公司职工每周平均上网时间超过4小时的概率是多少?
(Ⅲ)在样本数据中,有70名女职工的每周平均上网时间超过4个小时.请将每周平均上网时间与性别的列联表补充完整,并判断是否有95%的把握认为“该公司职工的每周平均上网时间与性别有关”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数其中
且
(i)当时,若
,则实数
的取值范围是___________;
(ii) 若存在实数使得方程
有两个实根,则实数
的取值范围是_______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,以
为极点,
轴正半轴为极轴建立极坐标系.已知曲线
的参数方程为
(
为参数),
,
为过点
的两条直线,
交
于
,
两点,
交
于
,
两点,且
的倾斜角为
,
.
(1)求和
的极坐标方程;
(2)当时,求点
到
,
,
,
四点的距离之和的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com