已知数列{an}的各项均为正数,前n项和为Sn,且Sn=
an(an+1)
2
(n∈N*)

(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
1
2Sn
Tn=b1+b2+…+bn
,求Tn
分析:(Ⅰ)由Sn=
an(an+1)
2
,知2Sn=an2+an2Sn-1=an-12+an-1
 
 
 
(a≥2)
,所以(an+an-1)(an-an-1-1)=0,由此能求出an=n.
(Ⅱ)由Sn=
an(an+1)
2
=
n(n+1)
2
,知bn=
1
n(n+1)
=
1
n
-
1
n+1
,由此能求出Tn
解答:解:(Ⅰ)∵Sn=
an(an+1)
2

2Sn=an2+an,①
2Sn-1=an-12+an-1
 
 
 
(a≥2)
,②
由①-②得:2an=an2-an-12+an-an-1,(2分)  
(an+an-1)(an-an-1-1)=0,
∵an>0,∴an-an-1=1
 
 
 
(n≥2)

又∵a1=S1=
a1(a1+1)
2

∴a1=1,∴an=a1+(n-1)d=n
 
 
 
(n≥2)
,(5分)
当n=1时,a1=1,符合题意.
故an=n.(6分)
(Ⅱ)∵Sn=
an(an+1)
2
=
n(n+1)
2

bn=
1
n(n+1)
=
1
n
-
1
n+1
,(10分)
Tn=1-
1
2
+
1
2
-
1
3
+…+
1
n
-
1
n+1
=1-
1
n+1
=
n
n+1
.(12分)
点评:本题考查数列的通项公式和前n项和公式的求法,解题时要认真审题,注意迭代法和裂项求和法的合理运用.
关闭