已知数列{an}的各项均为正数,前n项和为Sn,且Sn=
(n∈N*)
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
,Tn=b1+b2+…+bn,求Tn.
| an(an+1) |
| 2 |
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=
| 1 |
| 2Sn |
分析:(Ⅰ)由Sn=
,知2Sn=an2+an,2Sn-1=an-12+an-1
(a≥2),所以(an+an-1)(an-an-1-1)=0,由此能求出an=n.
(Ⅱ)由Sn=
=
,知bn=
=
-
,由此能求出Tn.
| an(an+1) |
| 2 |
(Ⅱ)由Sn=
| an(an+1) |
| 2 |
| n(n+1) |
| 2 |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
解答:解:(Ⅰ)∵Sn=
,
∴2Sn=an2+an,①
2Sn-1=an-12+an-1
(a≥2),②
由①-②得:2an=an2-an-12+an-an-1,(2分)
(an+an-1)(an-an-1-1)=0,
∵an>0,∴an-an-1=1
(n≥2),
又∵a1=S1=
,
∴a1=1,∴an=a1+(n-1)d=n
(n≥2),(5分)
当n=1时,a1=1,符合题意.
故an=n.(6分)
(Ⅱ)∵Sn=
=
,
∴bn=
=
-
,(10分)
故Tn=1-
+
-
+…+
-
=1-
=
.(12分)
| an(an+1) |
| 2 |
∴2Sn=an2+an,①
2Sn-1=an-12+an-1
由①-②得:2an=an2-an-12+an-an-1,(2分)
(an+an-1)(an-an-1-1)=0,
∵an>0,∴an-an-1=1
又∵a1=S1=
| a1(a1+1) |
| 2 |
∴a1=1,∴an=a1+(n-1)d=n
当n=1时,a1=1,符合题意.
故an=n.(6分)
(Ⅱ)∵Sn=
| an(an+1) |
| 2 |
| n(n+1) |
| 2 |
∴bn=
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
故Tn=1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+1 |
| n |
| n+1 |
点评:本题考查数列的通项公式和前n项和公式的求法,解题时要认真审题,注意迭代法和裂项求和法的合理运用.