【题目】如图,在直三棱柱中,
,
,
,
.
(1)证明:平面
;
(2)在线段上是否存在点
,使得平面
与平面
所成的锐二面角为
,若存在,求出线段
的长度;若不存在,说明理由.
科目:高中数学 来源: 题型:
【题目】如图所示,在四棱锥中,底面
是边长为
的正方形,
是正三角形,
为线段
的中点,点
为底面
内的动点,则下列结论正确的是( )
A.若时,平面
平面
B.若时,直线
与平面
所成的角的正弦值为
C.若直线和
异面时,点
不可能为底面
的中心
D.若平面平面
,且点
为底面
的中心时,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题:关于
的不等式
无解;命题
:指数函数
是
上的增函数.
(1)若命题为真命题,求实数
的取值范围;
(2)若满足为假命题且
为真命题的实数
取值范围是集合
,集合
,且
,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过椭圆右焦点
的直线交椭圆与A,B两点,
为其左焦点,已知
的周长为8,椭圆的离心率为
.
(1)求椭圆的方程;
(2)是否存在圆心在原点的圆,使得该圆任意一条切线与椭圆恒有两个交点
,
?若存在,求出该圆的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线,不与坐标轴垂直的直线
与抛物线交于
两点,当
且
时,
.
(1)求抛物线的标准方程;
(2)若过定点
,点
关于
轴的对称点为
,证明:直线
过定点,并求出定点坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com