【题目】如图,是由两个全等的菱形
和
组成的空间图形,
,∠BAF=∠ECD=60°.
(1)求证:;
(2)如果二面角B-EF-D的平面角为60°,求直线与平面
所成角的正弦值.
【答案】(1)见解析;(2)
【解析】
(1)取的中点
,连接
、
,
.利用菱形的性质、等边三角形的性质分别证得
,
,由此证得
平面
,进而求得
,根据空间角的概念,证得
.
(2)根据(1)得到就是二面角
的平面角,即
,由此求得
的长.利用等体积法计算出
到平面
的距离
,根据线面角的正弦值的计算公式,计算出直线
与平面
所成角的正弦值.
(1)取的中点
,连接
、
,
.在菱形
中,
∵,∴
是正三角形,∴
,
同理在菱形,可证
,∴
平面
,∴
,
又∵,∴
.
(2)由(1)知,就是二面角
的平面角,即
,
又,所以
是正三角形,故有
,
如图,取的中点
,连接
,则
,又由(1)得
,
所以,平面
,且
,又
,在直角
中,
,
所以,设
到平面
的距离为
,则
,
,所以
,
故直线与平面
所成角正弦值为
.
科目:高中数学 来源: 题型:
【题目】如图①,在直角梯形ABCD中,AB∥CD,AB⊥AD,且AB=AD=CD=1.现以AD为一边向梯形外作正方形ADEF,然后沿边AD将正方形ADEF翻折,使平面ADEF与平面ABCD垂直,M为ED的中点,如图②.
(1)求证:AM∥平面BEC;
(2)求点D到平面BEC的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知三棱柱中,侧棱与底面垂直,且
,
,
、
分别是
、
的中点,点
在线段
上,且
.
(1)求证:不论取何值,总有
;
(2)当时,求平面
与平面
所成二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线
的倾斜角为
,且经过点
.以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,直线
,从原点O作射线交
于点M,点N为射线OM上的点,满足
,记点N的轨迹为曲线C.
(Ⅰ)求出直线的参数方程和曲线C的直角坐标方程;
(Ⅱ)设直线与曲线C交于P,Q两点,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆,离心率为
,直线
恒过
的一个焦点
.
(1)求的标准方程;
(2)设为坐标原点,四边形
的顶点均在
上,
交于
,且
,若直线
的倾斜角的余弦值为
,求直线
与
轴交点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线
的参数方程为
(
为参数),直线
与曲线
交于
两点.
(1)求的长;
(2)在以为极点,
轴的正半轴为极轴建立的极坐标系中,设点
的极坐标为
,求点
到线段
中点
的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(
,
,
)的图象如图所示,令
,则下列关于函数
的说法中正确的是( )
A. 函数图象的对称轴方程为
B. 函数的最大值为2
C. 函数的图象上存在点
,使得在
点处的切线与直线
平行
D. 若函数的两个不同零点分别为
,
,则
最小值为
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】新型冠状病毒肺炎疫情爆发以来,疫情防控牵挂着所有人的心. 某市积极响应上级部门的号召,通过沿街电子屏、微信公众号等各种渠道对此战“疫”进行了持续、深入的悬窗,帮助全体市民深入了解新冠状病毒,增强战胜疫情的信心. 为了检验大家对新冠状病毒及防控知识的了解程度,该市推出了相关的知识问卷,随机抽取了年龄在15~75岁之间的200人进行调查,并按年龄绘制频率分布直方图如图所示,把年龄落在区间和
内的人分别称为“青少年人”和“中老年人”. 经统计“青少年人”和“中老年人”的人数比为19:21. 其中“青少年人”中有40人对防控的相关知识了解全面,“中老年人”中对防控的相关知识了解全面和不够全面的人数之比是2:1.
(1)求图中的值;
(2)现采取分层抽样在和
中随机抽取8名市民,从8人中任选2人,求2人中至少有1人是“中老年人”的概率是多少?
(3)根据已知条件,完成下面的2×2列联表,并根据统计结果判断:能够有99.9%的把握认为“中老年人”比“青少年人”更加了解防控的相关知识?
了解全面 | 了解不全面 | 合计 | |
青少年人 | |||
中老年人 | |||
合计 |
附表及公式:,其中
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com