【题目】某企业为了解该企业工人组装某产品所用时间,对每个工人组装一个该产品的用时作了记录,得到大量统计数据.从这些统计数据中随机抽取了个数据作为样本,得到如图所示的茎叶图(单位:分钟).若用时不超过
(分钟),则称这个工人为优秀员工.
(1)求这个样本数据的中位数和众数;
(2)从样本数据用时不超过分钟的工人中随机抽取
个,求至少有一个工人是优秀员工的概率.
科目:高中数学 来源: 题型:
【题目】某手机软件研发公司为改进产品,对软件用户每天在线的时间进行调查,随机抽取40名男性与20名女性对其每天在线的时间进行了调查统计,并绘制了如图所示的条形图,其中每天的在线时间4h以上(包括4h)的用户被称为“资深用户”.
(1)根据上述样本数据,完成下面的2×2列联表,并判定是否有95%的把握认为是否为“资深用户”与性别有关;
“资深用户” | 非“资深用户” | 总计 | |
男性 | |||
女性 | |||
总计 |
(2)用样本估计总体,若从全体用户中随机抽取3人,设这3人中“资深用户”的人数为X,求随机变量X的分布列与数学期望.
附:,其中n=a+b+c+d.
P(K2≥k0) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
k0 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点是抛物线
的准线上一点,F为抛物线的焦点,P为抛物线上的点,且
,若双曲线C中心在原点,F是它的一个焦点,且过P点,当m取最小值时,双曲线C的离心率为______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
已知曲线的参数方程为
,在同一平面直角坐标系中,将曲线
上的点按坐标变换
得到曲线
,以原点为极点,
轴的正半轴为极轴,建立极坐标系.
(Ⅰ)求曲线的极坐标方程;
(Ⅱ)若过点(极坐标)且倾斜角为
的直线
与曲线
交于
两点,弦
的中点为
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点,且
,满足条件的
点的轨迹为曲线
.
(1)求曲线的方程;
(2)是否存在过点的直线
,直线
与曲线
相交于
两点,直线
与
轴分别交于
两点,使得
?若存在,求出直线
的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂利用随机数表对生产的600个零件进行抽样测试,先将600个零件进行编号,编号分别为001,002,,599,600从中抽取60个样本,如下提供随机数表的第4行到第6行:
32 21 18 34 29 78 64 54 07 32 52 42 06 44 38 12 23 43 56 77 35 78 90 56 42
84 42 12 53 31 34 57 86 07 36 25 30 07 32 86 23 45 78 89 07 23 68 96 08 04
32 56 78 08 43 67 89 53 55 77 34 89 94 83 75 22 53 55 78 32 45 77 89 23 45
若从表中第6行第6列开始向右依次读取3个数据,则得到的第6个样本编号
A. 522B. 324C. 535D. 578
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线
的参数方程为
(
为参数),以坐标原点
为极点,
轴正半轴为极轴建立极坐标系,直线
的极坐标方程为
.
(1)求曲线的普通方程和直线
的直角坐标方程;
(2)射线的极坐标方程为
,若射线
与曲线
的交点为
,与直线
的交点为
,求线段
的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业现有A.B两套设备生产某种产品,现从A,B两套设备生产的大量产品中各抽取了100件产品作为样本,检测某一项质量指标值,若该项质量指标值落在内的产品视为合格品,否则为不合格品.图1是从A设备抽取的样本频率分布直方图,表1是从B设备抽取的样本频数分布表.
图1:A设备生产的样本频率分布直方图
表1:B设备生产的样本频数分布表
质量指标值 | ||||||
频数 | 2 | 18 | 48 | 14 | 16 | 2 |
(1)请估计A.B设备生产的产品质量指标的平均值;
(2)企业将不合格品全部销毁后,并对合格品进行等级细分,质量指标值落在内的定为一等品,每件利润240元;质量指标值落在
或
内的定为二等品,每件利润180元;其它的合格品定为三等品,每件利润120元.根据图1、表1的数据,用该组样本中一等品、二等品、三等品各自在合格品中的频率代替从所有产品中抽到一件相应等级产品的概率.企业由于投入资金的限制,需要根据A,B两套设备生产的同一种产品每件获得利润的期望值调整生产规模,请根据以上数据,从经济效益的角度考虑企业应该对哪一套设备加大生产规模?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于正整数,如果
个整数
满足
,
且,则称数组
为
的一个“正整数分拆”.记
均为偶数的“正整数分拆”的个数为
均为奇数的“正整数分拆”的个数为
.
(Ⅰ)写出整数4的所有“正整数分拆”;
(Ⅱ)对于给定的整数,设
是
的一个“正整数分拆”,且
,求
的最大值;
(Ⅲ)对所有的正整数,证明:
;并求出使得等号成立的
的值.
(注:对于的两个“正整数分拆”
与
,当且仅当
且
时,称这两个“正整数分拆”是相同的.)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com