(理科做)已知cos(x+
)=
,x∈(0,π),则sinx的值为( )
| π |
| 6 |
| 3 |
| 5 |
分析:先根据同角三角函数间的基本关系求出sin(x+
)=
,再把所求中的x转化为(x+
)-
;结合两角差的正弦公式即可求出结论.
| π |
| 6 |
| 4 |
| 5 |
| π |
| 6 |
| π |
| 6 |
解答:解:由题意得:cos(x+
)=
,x∈(0,π),
∴sin(x+
)=
,
又由sinx=sin[(x+
)-
]
=sin(x+
)cos
-cos(x+
)sin
=
×
-
×
=
故选:B.
| π |
| 6 |
| 3 |
| 5 |
∴sin(x+
| π |
| 6 |
| 4 |
| 5 |
又由sinx=sin[(x+
| π |
| 6 |
| π |
| 6 |
=sin(x+
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
=
| 4 |
| 5 |
| ||
| 2 |
| 3 |
| 5 |
| 1 |
| 2 |
4
| ||
| 10 |
故选:B.
点评:本题主要考查同角三角函数间的基本关系以及角的变换,两角差的正弦公式.解决本题的关键在于把所求中的x转化为(x+
)-
.
| π |
| 6 |
| π |
| 6 |