精英家教网 > 高中数学 > 题目详情

【题目】三国时代吴国数学家赵爽所注《周髀算经》中给出了勾股定理的绝妙证明,左上面是赵爽的弦图及注文,弦图是一个以勾股形之弦为边的正方形,其面积称为弦实,图中包含四个全等的勾股形及一个小正方形,分别涂成红(朱)色及黄色,其面积称为朱实以及黄实,并且利用(股勾)朱实黄实弦实,化简得勾,设勾股中勾股比为,若向弦图内随机抛掷颗图钉,则落在黄色图形内的图钉数大约为_______________.

【答案】214

【解析】

设条直角边为 ,则另外一条直角边为,求出黄色面积与正方形面积之比,1600与比相乘即可得答案.

:设图中直角三角形较短的一条直角边为 ,则另外一条直角边为

此时正方形的边长为.则图中朱色面积为

正方形的面积.所以黄色面积为

由题意知: 落在黄色图形内的图钉数.

故答案为:214.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的左顶点为,焦距为2

1)求椭圆的标准方程;

2)过点的直线与椭圆的另一个交点为点,与圆的另一个交点为点,是否存在直线使得?若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,过的直线与抛物线相交于两点.

1)若点是点关于坐标原点的对称点,求面积的最小值;

2)是否存在垂直于轴的直线,使得被以为直径的圆截得的弦长恒为定值?若存在,求出的方程和定值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了保护环境,某工厂在国家的号召下,把废弃物回收转化为某种产品,经测算,处理成本(万元)与处理量(吨)之间的函数关系可近似的表示为:

,且每处理一吨废弃物可得价值为万元的某种产品,同时获得国家补贴万元.

1)当时,判断该项举措能否获利?如果能获利,求出最大利润;

如果不能获利,请求出国家最少补贴多少万元,该工厂才不会亏损?

2)当处理量为多少吨时,每吨的平均处理成本最少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年第一期中国青年阅读指数数据显示,从阅读需求的角度,排名前三的阅读领域分别为文学、哲学及社会科学和历史.某学校从文科生和理科生中选取了经常阅读的学生进行了假期阅读内容和阅读时间方面的调查,得到以下数据.

学生所学文理与阅读内容列联表

文学阅读人数

非文学阅读人数

调查人数

理科生

70

130

200

文科生

45

55

100

合计

115

185

300

(Ⅰ)判断能否有把握认为学生所学文理与阅读内容有关?

(Ⅱ)从阅读时间大于30分钟的被调查同学中随机选取30名学生,其阅读时间(分钟)整理成如图所示的茎叶图,并绘制日均阅读时间分布表;

其中30名同学的日均阅读时间分布表(单位:分钟)

阅读时间

男生人数

4

2

女生人数

10

2

求出的值,并根据日均时间分布表,估计这30名同学日阅读时间的平均值;

(Ⅲ)从(Ⅱ)中日均阅读时间高于90分钟的同学中随机选取2人介绍阅读体会,求这2人性别相同的概率.

参考公式:,其中.

参考数据:

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,已知直线l的参数方程是t为参数),以O为极点,x轴正半轴为极轴的极坐标系中,圆C的极坐标方程为

1)求直线l的普通方程和圆C的直角坐标方程;

2)由直线l上的点向圆C引切线,求切线长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在中, ,角的平分线于点,设.(1)求;(2)若,求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥PABCD中,四边形ABCD为平行四边形,BDDC,△PCD为正三角形,平面PCD⊥平面ABCDEPC的中点.

1)证明:AP∥平面EBD

2)证明:BEPC

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆与抛物线有共同的焦点,且离心率为,设分别是为椭圆的上下顶点

1)求椭圆的方程;

2)过点轴不垂直的直线与椭圆交于不同的两点,当弦的中点落在四边形内(含边界)时,求直线的斜率的取值范围.

查看答案和解析>>

同步练习册答案
閸忥拷 闂傦拷