【题目】若函数在区间
上恰好有一个零点,则
的最小值为______.
【答案】
【解析】
将函数在区间
,
上有一个零点等价于方程
在区间
,
上恰有一个根,也即是函数
和函数
的图象在区间
上恰好有一个交点,由二次函数得出函数
的值域,令
,再分当
时,当
时,两种情况下两函数图象的交点情况得出
的范围,根据双勾函数可求得
的最小值.
依题意,函数在区间
,
上有一个零点等价于方程
在区间
,
上恰有一个根,
函数和函数
的图象在区间
上恰好有一个交点,
函数关于
对称,在
上有最小值
,
时,
,
,
函数,令
,
当时,由复合函数单调性知
单调递减,当
时,
,
所以函数和函数
的图象在区间
上无交点,
当时,由复合函数单调性知
单调递增,如图,
由图可知,当,
时,函数图象恰好有1个交点,
此时,解得
,
因为在
上单调递增,所以
,即
的最小值为
,
故答案为:.
科目:高中数学 来源: 题型:
【题目】2022年北京冬奥运动会即第24届冬季奥林匹克运动会将在2022年2月4日至2月20日在北京和张家口举行,某研究机构为了了解大学生对冰壶运动的兴趣,随机从某大学生中抽取了100人进行调查,经统计男生与女生的人数比为,男生中有20人表示对冰壶运动有兴趣,女生中有15人对冰壶运动没有兴趣.
(1)完成列联表,并判断能否有
把握认为“对冰壶运动是否有兴趣与性别有关”?
有兴趣 | 没有兴趣 | 合计 | |
男 | 20 | ||
女 | 15 | ||
合计 | 100 |
(2)用分层抽样的方法从样本中对冰壶运动有兴趣的学生中抽取6人,求抽取的男生和女生分别为多少人?若从这6人中选取两人作为冰壶运动的宣传员,求选取的2人中恰好有1位男生和1位女生的概率.
附:,其中
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.076 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知某种新型病毒的传染能力很强,给人们生产和生活带来很大的影响,所以创新研发疫苗成了当务之急.为此,某药企加大了研发投入,市场上这种新型冠状病毒的疫苗的研发费用
(百万元)和销量
(万盒)的统计数据如下:
研发费用 | 2 | 3 | 6 | 10 | 13 | 14 |
销量 | 1 | 1 | 2 | 2.5 | 4 | 4.5 |
(1)根据上表中的数据,建立关于
的线性回归方程
(用分数表示);
(2)根据所求的回归方程,估计当研发费用为1600万元时,销售量为多少?
参考公式:,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】辽宁省六校协作体(葫芦岛第一高中、东港二中、凤城一中、北镇高中、瓦房店高中、丹东四中)中的某校文科实验班的名学生期中考试的语文、数学成绩都不低于
分,其中语文成绩的频率分布直方图如图所示,成绩分组区间是:
、
、
、
、
.
(1)根据频率分布直方图,估计这名学生语文成绩的中位数和平均数;(同一组数据用该区间的中点值作代表;中位数精确到
)
(2)若这名学生语文成绩某些分数段的人数
与数学成绩相应分数段的人数
之比如下表所示:
分组区间 | ||||
从数学成绩在的学生中随机选取
人,求选出的
人中恰好有
人数学成绩在
的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的焦点为
为
上位于第一象限的任意一点,过点
的直线
交
于另一点
,交
轴的正半轴于点
.
(1)若当点的横坐标为
,且
为等腰三角形,求
的方程;
(2)对于(1)中求出的抛物线,若点
,记点
关于
轴的对称点为
交
轴于点
,且
,求证:点
的坐标为
,并求点
到直线
的距离
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某保险公司给年龄在岁的民众提供某种疾病的一年期医疗保险,现从
名参保人员中随机抽取
名作为样本进行分析,按年龄段
分成了五组,其频率分布直方图如下图所示;参保年龄与每人每年应交纳的保费如下表所示. 据统计,该公司每年为这一万名参保人员支出的各种费用为一百万元.
年龄 (单位:岁) | |||||
保费 (单位:元) |
(1)用样本的频率分布估计总体分布,为使公司不亏本,求精确到整数时的最小值
;
(2)经调查,年龄在之间老人每
人中有
人患该项疾病(以此频率作为概率).该病的治疗费为
元,如果参保,保险公司补贴治疗费
元.某老人年龄
岁,若购买该项保险(
取
中的
).针对此疾病所支付的费用为
元;若没有购买该项保险,针对此疾病所支付的费用为
元.试比较
和
的期望值大小,并判断该老人购买此项保险是否划算?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】平面直角坐标系xOy中,已知椭圆的离心率为
,左右焦点分别是
和
,以
为圆心,3为半径的圆与以
为圆心,1为半径的圆相交,且交点在椭圆C上.
(1)求椭圆C的方程.
(2)设椭圆,P为椭圆C上任意一点,过点P的直线
交椭圆E于A、B两点,射线OP交椭圆E于点Q.
①判断是否为定值?若是定值求出该定值,若不是定值说明理由.
②求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知曲线(
为参数),直线
(
为参数,
),直线
与曲线
相切于点
,以坐标原点
为极点,
轴的非负半轴为极轴建立极坐标系.
(1)求曲线的极坐标方程及点
的极坐标;
(2)曲线的直角坐标方程为
,直线
的极坐标方程为
,直线
与曲线
交于在
,
两点,记
的面积为
,
的面积为
,求
的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com