设等比数列的公比为q,前n项和为Sn,若Sn+1,Sn,Sn+2成等差数列,则q的值为        .

-2 


解析:

由题意可知q≠1,∴可得2(1-qn)=(1-qn+1)+(1-qn+2),即q2+q-2=0,解得q=-2或q=1(不合题意,舍去),∴q=-2.

关闭