精英家教网 > 高中数学 > 题目详情

【题目】南北朝时期的伟大数学家祖暅在数学上有突出贡献,他在实践的基础上提出祖暅原理:“幂势既同,则积不容异”.其含义是:夹在两个平行平面之间的两个几何体,被平行于这两个平行平面的任意平面所截,如果截得两个截面的面积总相等,那么这两个几何体的体积相等.如图,夹在两个平行平面之间的两个几何体的体积分别为,被平行于这两个平面的任意平面截得的两个截面面积分别为,则命题:“相等”是命题总相等”的(

A.充分不必要条件B.必要不充分条件

C.充要条件D.既不充分也不必要条件

【答案】B

【解析】

根据充分条件和必要条件的定义,结合祖暅原理进行判断即可.

由祖暅原理可知,若总相等,则相等,即必要性成立;

假设夹在两平行平面间的底面积为的棱柱和底面积为的棱锥,它们的体积分别为,则

这两个几何体被平行于这两个平面的任意平面截得的两个截面的面积分别为,但不总相等,即充分性不成立.

因此,命题是命题的必要不充分条件.

故选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】5名同学进行投篮比赛,决出第1名至第5名的不同名次,教练在公布成绩前透露,五名同学中的甲乙名次相邻,丙不是第一名,丁不是最后一名,根据教练的说法,这5名同学的名次排列最多有( )种不同的情况.

A.28B.32C.54D.64

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆和双曲线有共同焦点是它们的一个交点,且,记椭圆和双曲线的离心率分别为,则的最大值为( )

A. 3B. 2C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)讨论函数的单调性;

(2)若函数有两个极值点,且恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】太极图被称为“中华第一图”,闪烁着中华文明进程的光辉,它是由黑白两个鱼形纹组成的图案,俗称阴阳鱼,太极图展现了一种相互转化,相对统一的和谐美.定义:能够将圆O的周长和面积同时等分成两个部分的函数称为圆O的一个“太极函数”,设圆O,则下列说法中正确的是( )

A.函数是圆O的一个太极函数

B.O的所有非常数函数的太极函数都不能为偶函数

C.函数是圆O的一个太极函数

D.函数的图象关于原点对称是为圆O的太极函数的充要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于的说法,正确的是(

A.展开式中的二项式系数之和为1024B.展开式中第6项的二项式系数最大

C.展开式中第5项和第7项的二项式系数最大D.展开式中第6项的系数最小

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的方程为,离心率,且短轴长为4.

求椭圆的方程;

已知,若直线l与圆相切,且交椭圆ECD两点,记的面积为,记的面积为,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学利用周末组织教职员工进行了一次秋季登山健身的活动,有Ⅳ人参加,现将所有参加者按年龄情况分为等七组,其频率分布直方图如图所示,已知这组的参加者是6人.

1)已知这两组各有2名数学教师,现从这两个组中各选取2人担任接待工作,设两组的选择互不影响,求两组选出的人中恰有1名数学老师的概率;

2)组织者从这组的参加者(其中共有4名女教师,其余全为男教师)中随机选取3名担任后勤保障工作,其中女教师的人数为,求的分布列和均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《中国诗词大会》(第三季)亮点颇多,在“人生自有诗意”的主题下,十场比赛每场都有一首特别设计的开场诗词在声光舞美的配合下,百人团齐声朗诵,别有韵味.若《沁园春·长沙》、《蜀道难》、《敕勒歌》、《游子吟》、《关山月》、《清平乐·六盘山》排在后六场,且《蜀道难》排在《游子吟》的前面,《沁园春·长沙》与《清平乐·六盘山》不相邻且均不排在最后,则后六场的排法有__________种.(用数字作答)

查看答案和解析>>

同步练习册答案
闁稿骏鎷� 闂傚偊鎷�