【题目】(本小题满分12分)已知椭圆(
)的半焦距为
,原点
到经过两点
,
的直线的距离为
.
(Ⅰ)求椭圆的离心率;
(Ⅱ)如图,是圆
的一条直径,若椭圆
经过
,
两点,求椭圆
的方程.
【答案】(Ⅰ);(Ⅱ)
.
【解析】
试题(Ⅰ)先写过点,
的直线方程,再计算原点
到该直线的距离,进而可得椭圆
的离心率;(Ⅱ)先由(Ⅰ)知椭圆
的方程,设
的方程,联立
,消去
,可得
和
的值,进而可得
,再利用
可得
的值,进而可得椭圆
的方程.
试题解析:(Ⅰ)过点,
的直线方程为
,
则原点到直线的距离
,
由,得
,解得离心率
.
(Ⅱ)解法一:由(Ⅰ)知,椭圆的方程为
. (1)
依题意,圆心是线段
的中点,且
.
易知,不与
轴垂直,设其直线方程为
,代入(1)得
设则
由,得
解得
.
从而.
于是.
由,得
,解得
.
故椭圆的方程为
.
解法二:由(Ⅰ)知,椭圆的方程为
. (2)
依题意,点,
关于圆心
对称,且
.
设则
,
,
两式相减并结合得
.
易知,不与
轴垂直,则
,所以
的斜率
因此直线方程为
,代入(2)得
所以,
.
于是.
由,得
,解得
.
故椭圆的方程为
.
科目:高中数学 来源: 题型:
【题目】已知函数(0<φ<π)
(1)当φ时,在给定的坐标系内,用“五点法”做出函数f(x)在一个周期内的图象;
(2)若函数f(x)为偶函数,求φ的值;
(3)在(2)的条件下,求函数在[﹣π,π]上的单调递减区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在测试中,客观题难度的计算公式为,其中
为第
题的难度,
为答对该题的人数,
为参加测试的总人数.现对某校高三年级120名学生进行一次测试,共5道客观题.测试前根据对学生的了解,预估了每道题的难度,如下表所示:
题号 | 1 | 2 | 3 | 4 | 5 |
考前预估难度 | 0.9 | 0.8 | 0.7 | 0.6 | 0.4 |
测试后,从中随机抽取了10名学生,将他们编号后统计各题的作答情况,如下表所示(“√”表示答对,“×”表示答错):
| 1 | 2 | 3 | 4 | 5 |
1 | × | √ | √ | √ | √ |
2 | √ | √ | √ | √ | × |
3 | √ | √ | √ | √ | × |
4 | √ | √ | √ | × | × |
5 | √ | √ | √ | √ | √ |
6 | √ | × | × | √ | × |
7 | × | √ | √ | √ | × |
8 | √ | × | × | × | × |
9 | √ | √ | × | × | × |
10 | √ | √ | √ | √ | × |
(Ⅰ)根据题中数据,将抽样的10名学生每道题实测的答对人数及相应的实测难度填入下表,并估计这120名学生中第5题的实测答对人数;
题号 | 1 | 2 | 3 | 4 | 5 |
实测答对人数 | |||||
实测难度 |
(Ⅱ)从编号为1到5的5人中随机抽取2人,求恰好有1人答对第5题的概率;
(Ⅲ)定义统计量,其中
为第
题的实测难度,
为第
题的预估难度
.规定:若
,则称该次测试的难度预估合理,否则为不合理.判断本次测试的难度预估是否合理.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术》是我国古代数学成就的杰出代表.其中《方田》章给出计算弧田面积所用的经验公式为:弧田面积=(弦矢+矢2).弧田(如图),由圆弧和其所对弦所围成,公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.
按照上述经验公式计算所得弧田面积与其实际面积之间存在误差.现有圆心角为,弦长等于9米的弧田.
(1)计算弧田的实际面积;
(2)按照《九章算术》中弧田面积的经验公式计算所得结果与(1)中计算的弧田实际面积相差多少平方米?(结果保留两位小数)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校高一新生共有320人,其中男生192人,女生128人.为了解高一新生对数学选修课程的看法,采用分层抽样的方法从高一新生中抽取5人进行访谈.
(Ⅰ)这5人中男生、女生各多少名?
(Ⅱ)从这5人中随即抽取2人完成访谈问卷,求2人中恰有1名女生的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,直线C1的参数方程为(t为参数),以O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ2(1+sin2θ)=2,点M的极坐标为(
,
).
(1)求点M的直角坐标和C2的直角坐标方程;
(2)已知直线C1与曲线C2相交于A,B两点,设线段AB的中点为N,求|MN|的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com