设数列{an}满足a1+3a2+32a3+…+3n-1an=
,n∈N*.
(1)求数列{an}的通项;
(2)设bn=
,求数列{bn}的前n项和Sn.
| n |
| 3 |
(1)求数列{an}的通项;
(2)设bn=
| n |
| an |
分析:(1)由a1+3a2+32a3+…+3n-1an=
⇒当n≥2时,a1+3a2+32a3+…+3n-2an-1=
,两式作差求出数列{an}的通项.
(2)由(1)的结论可知数列{bn}的通项.再用错位相减法求和即可.
| n |
| 3 |
| n-1 |
| 3 |
(2)由(1)的结论可知数列{bn}的通项.再用错位相减法求和即可.
解答:解:(1)∵a1+3a2+32a3+…+3n-1an=
,①
∴当n≥2时,a1+3a2+32a3+…+3n-2an-1=
.②
①-②,得3n-1an=
,an=
(n≥2),
在①中,令n=1,
得a1=
.∴an=
.
(2)∵bn=
,
∴bn=n•3n.
∴Sn=3+2×32+3×33+…+n•3n.③
∴3Sn=32+2×33+3×34+…+n•3n+1.④
④-③,得2Sn=n•3n+1-(3+32+33+…+3n),
即2Sn=n•3n+1-
.
∴Sn=
+
.
| n |
| 3 |
∴当n≥2时,a1+3a2+32a3+…+3n-2an-1=
| n-1 |
| 3 |
①-②,得3n-1an=
| 1 |
| 3 |
| 1 |
| 3n |
在①中,令n=1,
得a1=
| 1 |
| 3 |
| 1 |
| 3n |
(2)∵bn=
| n |
| an |
∴bn=n•3n.
∴Sn=3+2×32+3×33+…+n•3n.③
∴3Sn=32+2×33+3×34+…+n•3n+1.④
④-③,得2Sn=n•3n+1-(3+32+33+…+3n),
即2Sn=n•3n+1-
| 3(1-3n) |
| 1-3 |
∴Sn=
| (2n-1)3n+1 |
| 4 |
| 3 |
| 4 |
点评:本题的第二问考查了数列求和的错位相减法.错位相减法适用于通项为一等差数列乘一等比数列组成的新数列.