精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线经过点,过A作两条不同直线,其中直线关于直线对称.

1)求抛物线E的方程及其准线方程;

2)设直线分别交抛物线E两点(均不与A重合),若以线段为直径的圆与抛物线E的准线相切,求直线的方程.

【答案】1)抛物线的方程为,准线方程为;(2

【解析】

1)代值计算,可得结果.

2)假设直线方程(且在直线左边),然后抛物线方程结合韦达定理,可得,同理得,然后利用准线与圆的位置关系得,最后简单计算,可得结果.

1)由题可知:

所以抛物线的方程为,准线方程为

2)由题可知:

设直线方程

设直线方程

在直线左边,则

另设

所以

同理

所以线段的中点

由线段为直径的圆与抛物线E的准线相切,则

所以

化简可得:,所以

,所以

所以

则直线的斜率为

所以直线方程为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线的准线过椭圆Cab0)的左焦点F,且点F到直线lc为椭圆焦距的一半)的距离为4.

1)求椭圆C的标准方程;

2)过点F做直线与椭圆C交于AB两点,PAB的中点,线段AB的中垂线交直线l于点Q.,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为圆上的动点,点在圆的半径上运动,点上,且满足,其中.

1)求点的轨迹方程;

2)设不过原点的直线与点的轨迹交于两点,且点关于恒过定点的直线对称.面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正四棱柱的底面边长,侧棱长,它的外接球的球心为,点的中点,点是球上的任意一点,有以下命题:

的长的最大值为9;

②三棱锥的体积的最大值是;

③存在过点的平面,截球的截面面积为;

④三棱锥的体积的最大值为20;

⑤过点的平面截球所得的截面面积最大时,垂直于该截面.

其中是真命题的序号是___________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,使电路接通,开关不同的开闭方式有( )

A. 11B. 20

C. 21D. 12

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了个网箱,测量各水箱产品的产量(单位:kg),其频率分布直方图如下图所示.

1)若用频率视为概率,记表示事件旧养殖法的箱产量低于kg,求事件的概率;

2)填写以下列联表,并根据此判断是否有的把握认为箱产量与养殖方法有关?

箱产量kg

箱产量kg

合计

旧养殖方法

新养殖方法

合计

3)根据箱产量频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知i为虚数单位,下列说法中正确的是(

A.若复数z满足,则复数z对应的点在以为圆心,为半径的圆上

B.若复数z满足,则复数

C.复数的模实质上就是复平面内复数对应的点到原点的距离,也就是复数对应的向量的模

D.复数对应的向量为,复数对应的向量为,若,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列四个命题:

①某班级一共有52名学生,现将该班学生随机编号,用系统抽样的方法抽取一个容量为4的样本,已知7号、33号、46号同学在样本中,那么样本中另一位同学的编号为23

②一组数据123345的平均数、众数、中位数都相同;

③一组数据0123,若该组数据的平均值为1,则样本的标准差为2

④根据具有线性相关关系的两个变量的统计数据所得的回归直线方程为中,,则.

其中真命题为(

A.①②④B.②④C.②③④D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,直线l的参数方程为m为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为,直线与曲线C交于MN两点.

(1)求直线l的普通方程和曲线C的直角坐标方程;

(2)求|MN|.

查看答案和解析>>

同步练习册答案
闁稿骏鎷� 闂傚偊鎷�