已知数列{an}是由正数组成的等差数列,p,q,r为非零自然数.
证明:(1)若p+q=2r,则
+
≥
;
(2)
+
+…+
+
≥
(n>1).
证明:(1)若p+q=2r,则
| 1 | ||
|
| 1 | ||
|
| 2 | ||
|
(2)
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
| 2n-1 | ||
|
分析:(1)设{an}的公差为d,由p+q=2r,ap+aq=2ar,知
+
≥
(ap+aq)2=2
.由此能够证明
+
≥
.
(2)由
+
≥
(i=1,2,3…2n-1),知
(
+
)≥
(2n-1).
| a | 2 p |
| a | 2 q |
| 1 |
| 2 |
| a | 2 r |
| 1 | ||
|
| 1 | ||
|
| 2 | ||
|
(2)由
| 1 | ||
|
| 1 | ||
|
| 2 | ||
|
| 2n-1 |
| i=1 |
| 1 | ||
|
| 1 | ||
|
| 2 | ||
|
解答:解:(1)设{an}的公差为d,
由p+q=2r,
ap+aq=2ar
∴
+
≥
(ap+aq)2=2
又(apaq)2≤[(
)2]2=
∴
+
≥
=
且d=0时,“=”成立
(2)由(1)知:
+
≥
(i=1,2,3…2n-1)
∴
(
+
)≥
(2n-1)
由p+q=2r,
ap+aq=2ar
∴
| a | 2 p |
| a | 2 q |
| 1 |
| 2 |
| a | 2 r |
又(apaq)2≤[(
| ap+aq |
| 2 |
| a | 4 r |
∴
| 1 | ||
|
| 1 | ||
|
2
| ||
|
| 2 | ||
|
(2)由(1)知:
| 1 | ||
|
| 1 | ||
|
| 2 | ||
|
∴
| 2n-1 |
| i=1 |
| 1 | ||
|
| 1 | ||
|
| 2 | ||
|
点评:本题考查数列与不等式的综合,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.