【题目】某市县乡教师流失现象非常严重,为了县乡孩子们能接受良好教育,某市今年要为两所县乡中学招聘储备未来三年的教师,已知现在该市县乡中学无多余教师,为决策应招聘多少县乡教师搜集并整理了该市50所县乡中学在过去三年内的教师流失数,得到如表的频率分布表:以这50所县乡中学流失教师数的频率代替一所县乡中学流失教师数发生的概率.
(1)求该市所有县乡中学教师流失数不低于8的概率;
(2)若从上述50所县乡中学中流失教师数不低于9的县乡学校中任取两所调查回访,了解其中原因,求这两所学校的教师流失数都是10的概率.
流失教师数 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
频数 | 2 | 4 | 11 | 16 | 12 | 3 | 2 |
科目:高中数学 来源: 题型:
【题目】已知函数,
(
为自然对数的底数).
(Ⅰ)当时,求函数
在点
处的切线方程;
(Ⅱ)若函数有两个零点,试求
的取值范围;
(Ⅲ)当时,
恒成立,求实数
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线
的参数方程为
(
为参数),将曲线
上各点的横坐标都缩短为原来的
倍,纵坐标坐标都伸长为原来的
倍,得到曲线
,在极坐标系(与直角坐标系
取相同的单位长度,且以原点
为极点,以
轴非负半轴为极轴)中,直线
的极坐标方程为
.
(1)求直线和曲线
的直角坐标方程;
(2)设点是曲线
上的一个动点,求它到直线
的距离的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线
的参数方程为
(
为参数),将曲线
上各点的横坐标都缩短为原来的
倍,纵坐标坐标都伸长为原来的
倍,得到曲线
,在极坐标系(与直角坐标系
取相同的单位长度,且以原点
为极点,以
轴非负半轴为极轴)中,直线
的极坐标方程为
.
(1)求直线和曲线
的直角坐标方程;
(2)设点是曲线
上的一个动点,求它到直线
的距离的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系中,直线
的参数方程为
(
为参数),以坐标原点为极点,
轴的正半轴为极轴建立极坐标系,并使得它与直角坐标系
有相同的长度单位,曲线
的极坐标方程为
.
(1)求直线的普通方程和曲线
的直角坐标方程;
(2)设曲线与直线
交于
、
两点,且
点的坐标为
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法中正确的是( )
A. 设随机变量,则
B. 线性回归直线不一定过样本中心点
C. 若两个随机变量的线性相关性越强,则相关系数的值越接近于1
D. 先把高三年级的2000名学生编号:1到2000,再从编号为1到50的50名学生中随机抽取1名学生,其编号为,然后抽取编号为
,
,
,……的学生,这样的抽样方法是分层抽样
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场为了了解顾客的购物信息,随机在商场收集了位顾客购物的相关数据如下表:
一次购物款(单位:元) | |||||
顾客人数 |
统计结果显示位顾客中购物款不低于
元的顾客占
,该商场每日大约有
名顾客,为了增加商场销售额度,对一次购物不低于
元的顾客发放纪念品.
(Ⅰ)试确定,
的值,并估计每日应准备纪念品的数量;
(Ⅱ)现有人前去该商场购物,求获得纪念品的数量
的分布列与数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2017年是内蒙古自治区成立70周年.某市旅游文化局为了庆祝内蒙古自治区成立70周年,举办了第十三届成吉思汗旅游文化周.为了了解该市关注“旅游文化周”居民的年龄段分布,随机抽取了名年龄在
且关注“旅游文化周”的居民进行调查,所得结果统计为如图所示的频率分布直方图.
年龄 | |||
单人促销价格(单位:元) |
(Ⅰ)根据频率分布直方图,估计该市被抽取市民的年龄的平均数;
(Ⅱ)某旅行社针对“旅游文化周”开展不同年龄段的旅游促销活动,各年龄段的促销价位如表所示.已知该旅行社的运营成本为每人元,以频率分布直方图中各年龄段的频率分布作为参团旅客的年龄频率分布,试通过计算确定该旅行社的这一活动是否盈利;
(Ⅲ)若按照分层抽样的方法从年龄在,
的居民中抽取
人进行旅游知识推广,并在知识推广后再抽取
人进行反馈,求进行反馈的居民中至少有
人的年龄在
的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com