【题目】已知椭圆:
的离心率为
,过左焦点
的直线与椭圆交于
,
两点,且线段
的中点为
.
(Ⅰ)求椭圆的方程;
(Ⅱ)设为
上一个动点,过点
与椭圆
只有一个公共点的直线为
,过点
与
垂直的直线为
,求证:
与
的交点在定直线上,并求出该定直线的方程.
【答案】(Ⅰ);(Ⅱ)证明见解析,
,
【解析】
(Ⅰ)设,
,根据点
,
都在椭圆上,代入椭圆方程两式相减,根据“设而不求”的思想,结合离心率以及中点坐标公式、直线的斜率建立等式即可求解.
(Ⅱ)设,由对称性,设
,由
,得椭圆上半部分的方程为
,从而求出直线
的方程,再由过点
与
垂直的直线为
,求出
,两方程联立,消去
,即可求解.
(Ⅰ)由题可知,直线
的斜率存在.
设,
,由于点
,
都在椭圆上,
所以①,
②,
①-②,化简得③
又因为离心率为,所以
.
又因为直线过焦点
,线段
的中点为
,
所以,
,
,
代入③式,得,解得
.
再结合,解得
,
,
故所求椭圆的方程为.
(Ⅱ)证明:设,由对称性,设
,由
,得椭圆上半部分的方程为
,
,
又过点
且与椭圆只有一个公共点,所以
,
所以:
,④
因为过点
且与
垂直,所以
:
,⑤
联立④⑤,消去,得
,
又,所以
,从而可得
,
所以与
的交点在定直线
上.
科目:高中数学 来源: 题型:
【题目】在多面体ABCDPE中,四边形ABCD是直角梯形,,
,平面
平面
,
,
,
,
,
的余弦值为
,
,F为BE中点,G为PD中点.
(1)求证:平面ABCD;
(2)求平面BCE与平面ADE所成角(锐角)的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某种植园在芒果临近成熟时,随机从一些芒果树上摘下100个芒果,其质量分别在,
,
,
,
,
(单位:克)中,经统计得频率分布直方图如图所示.
(1)经计算估计这组数据的中位数;
(2)现按分层抽样从质量为,
的芒果中随机抽取6个,再从这6个中随机抽取3个,求这3个芒果中恰有1个在
内的概率.
(3)某经销商来收购芒果,以各组数据的中间数代表这组数据的平均值,用样本估计总体,该种植园中还未摘下的芒果大约还有10000个,经销商提出如下两种收购方案:
A:所有芒果以10元/千克收购;
B:对质量低于250克的芒果以2元/个收购,高于或等于250克的以3元/个收购,通过计算确定种植园选择哪种方案获利更多?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左,右焦点分别为
,
,
,M是椭圆E上的一个动点,且
的面积的最大值为
.
(1)求椭圆E的标准方程,
(2)若,
,四边形ABCD内接于椭圆E,
,记直线AD,BC的斜率分别为
,
,求证:
为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学准备组建“文科”兴趣特长社团,由课外活动小组对高一学生文科、理科进行了问卷调查,问卷共100道题,每题1分,总分100分,该课外活动小组随机抽取了200名学生的问卷成绩(单位:分)进行统计,将数据按照,
,
,
,
分成5组,绘制的频率分布直方图如图所示,若将不低于60分的称为“文科方向”学生,低于60分的称为“理科方向”学生.
|
(1)根据已知条件完成下面列联表,并据此判断是否有99%的把握认为是否为“文科方向”与性别有关?
(2)将频率视为概率,现在从该校高一学生中用随机抽样的方法每次抽取1人,共抽取3次,记被抽取的3人中“文科方向”的人数为,若每次抽取的结果是相互独立的,求
的分布列、期望
和方差
.
参考公式:,其中
.
参考临界值:
| 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线C:,O为坐标原点,F为C的右焦点,过F的直线与C的两条渐近线的交点分别为M、N.若
OMN为直角三角形,则|MN|=
A. B. 3 C.
D. 4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线E:过点
,过抛物线E上一点
作两直线PM,PN与圆C:
相切,且分别交抛物线E于M、N两点.
(1)求抛物线E的方程,并求其焦点坐标和准线方程;
(2)若直线MN的斜率为,求点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com