【题目】如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PPD//平面MAC,PA=PD=,AB=4.
(I)求证:M为PB的中点;
(II)求二面角B-PD-A的大小;
(III)求直线MC与平面BDP所成角的正弦值.
【答案】(1)见解析(2)(3)
【解析】试题分析:(Ⅰ)设交点为
,连接
,因为线面平行,即
平面
,根据性质定理,可知线线平行,即
,再由
为
的中点,可知
为
的中点;(Ⅱ)因为平面
平面
,
,所以取
的中点
为原点建立空间直角坐标系,根据向量法先求两平面的法向量
,
,再根据公式
,求二面角的大小;(Ⅲ)根据(Ⅱ)的结论,直接求
即可.
试题解析:解:(I)设交点为
,连接
.
因为平面
,平面
平面
,所以
.
因为是正方形,所以
为
的中点,所以
为
的中点.
(II)取的中点
,连接
,
.
因为,所以
.
又因为平面平面
,且
平面
,所以
平面
.
因为平面
,所以
.
因为是正方形,所以
.
如图建立空间直角坐标系,则
,
,
,
,
.
设平面的法向量为
,则
,即
.
令,则
,
.于是
.
平面的法向量为
,所以
.
由题知二面角为锐角,所以它的大小为
.
(III)由题意知,
,
.
设直线与平面
所成角为
,则
.
所以直线与平面
所成角的正弦值为
.
科目:高中数学 来源: 题型:
【题目】如图,已知四面体中,
,且
两两互相垂直,点
是
的中心.
(1)求二面角的大小(用反三角函数表示);
(2)过作
,垂足为
,求
绕直线
旋转一周所形成的几何体的体积;
(3)将绕直线
旋转一周,则在旋转过程中,直线
与直线
所成角记为
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:
过点
,且它的焦距是短轴长的
倍.
(1)求椭圆的方程.
(2)若,
是椭圆
上的两个动点(
,
两点不关于
轴对称),
为坐标原点,
,
的斜率分别为
,
,问是否存在非零常数
,使当
时,
的面积
为定值?若存在,求
的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.
(1)从袋中随机抽取两个球,求取出的球的编号之和不大于4的概率;
(2)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n,求的概率
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列的前n项和为
,
,公差为
若
,求数列
的通项公式;
是否存在d,n使
成立?若存在,试找出所有满足条件的d,n的值,并求出数列
的通项公式;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了选拔学生参加全市中学生物理竞赛,学校先从高三年级选取60名同学进行竞赛预选赛,将参加预选赛的学生成绩(单位:分)按范围,
,
,
分组,得到的频率分布直方图如图:
(1)计算这次预选赛的平均成绩(同一组中的数据用该组区间的中点值作代表);
(2)若对得分在前的学生进行校内奖励,估计获奖分数线;
(3)若这60名学生中男女生比例为,成绩不低于60分评估为“成绩良好”,否则评估为“成绩一般”,试完成下面
列联表,是否有
的把握认为“成绩良好”与“性别”有关?
成绩良好 | 成绩一般 | 合计 | |
男生 | |||
女生 | |||
合计 |
附:,
临界值表:
0.10 | 0.05 | 0.010 | |
2.706 | 3.841 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线E:,圆C:
.
若过抛物线E的焦点F的直线l与圆C相切,求直线l方程;
在
的条件下,若直线l交抛物线E于A,B两点,x轴上是否存在点
使
为坐标原点
?若存在,求出点M的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(Ⅰ)求的单调区间;
(Ⅱ)求在区间
上的最小值.
【答案】(Ⅰ);(Ⅱ)
.
【解析】(Ⅰ).
令,得
.
与
的情况如上:
所以,的单调递减区间是
,单调递增区间是
.
(Ⅱ)当,即
时,函数
在
上单调递增,
所以在区间
上的最小值为
.
当,即
时,
由(Ⅰ)知在
上单调递减,在
上单调递增,
所以在区间
上的最小值为
.
当,即
时,函数
在
上单调递减,
所以在区间
上的最小值为
.
综上,当时,
的最小值为
;
当时,
的最小值为
;
当时,
的最小值为
.
【题型】解答题
【结束】
19
【题目】已知抛物线的顶点在原点,焦点在坐标轴上,点
为抛物线
上一点.
(1)求的方程;
(2)若点在
上,过
作
的两弦
与
,若
,求证: 直线
过定点.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com