【题目】已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)在x=
取得最大值2,方程f(x)=0的两个根为x1、x2 , 且|x1﹣x2|的最小值为π.
(1)求f(x);
(2)将函数y=f(x)图象上各点的横坐标压缩到原来的
,纵坐标不变,得到函数y=g(x)的图象,求函数g(x)的单调增区间和在(﹣
,
)上的值域.
参考答案:
【答案】
(1)解:∵函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)在x=
取得最大值2,∴A=2,
方程f(x)=0的两个根为x1、x2,且|x1﹣x2|的最小值为
=
=π,∴ω=1,
再根据五点法作图可得1
+φ=
,∴φ=
,∴ ![]()
(2)解:将函数y=f(x)图象上各点的横坐标压缩到原来的
,纵坐标不变,得到函数y=g(x)=2sin(2x+
)的图象,
令2kπ﹣
≤2x+
≤2kπ+
,求得kπ﹣
≤x≤kπ+
,可得函数g(x)的增区间为[kπ﹣
,kπ+
],k∈Z.
在(﹣
,
)上,∵2x+
∈(﹣
,
),∴g(x)=2sin(2x+
)∈(﹣1,2]
【解析】(1)由最值求出A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式.(2)根据函数y=Asin(ωx+φ)的图象变换规律,求得g(x)的解析式,再利用正弦函数的单调性、定义域和值域,求得结论.
【考点精析】根据题目的已知条件,利用函数y=Asin(ωx+φ)的图象变换的相关知识可以得到问题的答案,需要掌握图象上所有点向左(右)平移
个单位长度,得到函数
的图象;再将函数
倍(纵坐标不变),得到函数
的图象;再将函数
的图象上所有点的纵坐标伸长(缩短)到原来的
倍(横坐标不变),得到函数
的图象.
-
科目: 来源: 题型:
查看答案和解析>>【题目】下表提供了某厂节能降耗技术改造后生产产品过程中记录的产量x(吨)与相应的生产能耗y(吨)标准煤的几组对照数据:
x
3
4
5
6
y
2.5
3
4
4.5
(1)求y关于x的线性回归方程;(已知
)
(2)已知该厂技术改造前100吨甲产品能耗为90吨标准煤,试根据(1)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技术改造前降低了多少吨标准煤. -
科目: 来源: 题型:
查看答案和解析>>【题目】某家电公司销售部门共有200位销售员,每位部门对每位销售员都有1400万元的年度销售任务,已知这200位销售员去年完成销售额都在区间
(单位:百万元)内,现将其分成5组,第1组,第2组,第3组,第4组,第5组对应的区间分别为
,
,
,
,
,绘制出频率分布直方图.
(1)求
的值,并计算完成年度任务的人数;(2)用分层抽样从这200位销售员中抽取容量为25的样本,求这5组分别应抽取的人数;
(3)现从(2)中完成年度任务的销售员中随机选取2位,奖励海南三亚三日游,求获得此奖励的2位销售员在同一组的概率.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为[40,50],[50,60],…,[80,90],[90,100]

(1)求频率分布图中a的值;
(2)估计该企业的职工对该部门评分不低于80的概率;
(3)从评分在[40,60]的受访职工中,随机抽取2人,求此2人评分都在[40,50]的概率. -
科目: 来源: 题型:
查看答案和解析>>【题目】某公司2016年前三个月的利润(单位:百万元)如下:
月份
1
2
3
利润
2
3.9
5.5
(1)求利润
关于月份
的线性回归方程;(2)试用(1)中求得的回归方程预测4月和5月的利润;
(3)试用(1)中求得的回归方程预测该公司2016年从几月份开始利润超过1000万?
相关公式:
. -
科目: 来源: 题型:
查看答案和解析>>【题目】解答
(1)在区间[1,3]上任取两整数a、b,求二次方程x2+2ax+b2=0有实数根的概率.
(2)在区间[1,3]上任取两实数a、b,求二次方程x2+2ax+b2=0有实数根的概率. -
科目: 来源: 题型:
查看答案和解析>>【题目】交强险是车主必须为机动车购买的险种,若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为
元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就是越高,具体浮动情况如下表:交强险浮动因素和浮动费率比率表
浮动因素
浮动比率

上一个年度未发生有责任道路交通事故
下浮10%

上两个年度未发生有责任道路交通事故
下浮20%

上三个及以上年度未发生有责任道路交通事故
下浮30%

上一个年度发生一次有责任不涉及死亡的道路交通事故
0%

上一个年度发生两次及两次以上有责任道路交通事故
上浮10%

上一个年度发生有责任道路交通死亡事故
上浮30%
某机构为了 某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:
类型






数量
10
5
5
20
15
5
以这60辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:
(1)按照我国《机动车交通事故责任强制保险条例》汽车交强险价格的规定,
,记
为某同学家的一辆该品牌车在第四年续保时的费用,求
的分布列与数学期望;(数学期望值保留到个位数字)(2)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车,假设购进一辆事故车亏损5000元,一辆非事故车盈利10000元:
①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至多有一辆事故车的概率;
②若该销售商一次购进100辆(车龄已满三年)该品牌二手车,求他获得利润的期望值.
相关试题