精英家教网 > 高中数学 > 题目详情

【题目】为考察某动物疫苗预防某种疾病的效果,现对200只动物进行调研,并得到如下数据:

未发病

发病

合计

未注射疫苗

20

60

80

注射疫苗

80

40

120

合计

100

100

200

(附:

0.05

0.01

0.005

0.001

3.841

6.635

7.879

10.828

则下列说法正确的:(

A.至少有99.9%的把握认为“发病与没接种疫苗有关”

B.至多有99%的把握认为“发病与没接种疫苗有关”

C.至多有99.9%的把握认为“发病与没接种疫苗有关”

D.“发病与没接种疫苗有关”的错误率至少有0.01%

【答案】A

【解析】

根据所给表格及公式,即可计算的观测值,对比临界值表即可作出判断.

根据所给表格数据,结合计算公式可得其观测值为

所以至少有99.9%的把握认为发病与没接种疫苗有关

故选:A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数中,满足对,当时,;函数;函数.现给出是偶函数;上单调递增;无最大值;个零点这四个结论,则正确结论的编号是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】11月,2019全国美丽乡村篮球大赛在中国农村改革的发源地-安徽凤阳举办,其间甲、乙两人轮流进行篮球定点投篮比赛(每人各投一次为一轮),在相同的条件下,每轮甲乙两人在同一位置,甲先投,每人投一次球,两人有1人命中,命中者得1分,未命中者得-1分;两人都命中或都未命中,两人均得0分,设甲每次投球命中的概率为,乙每次投球命中的概率为,且各次投球互不影响.

1)经过1轮投球,记甲的得分为,求的分布列;

2)若经过轮投球,用表示经过第轮投球,累计得分,甲的得分高于乙的得分的概率.

①求

②规定,经过计算机计算可估计得,请根据①中的值分别写出ac关于b的表达式,并由此求出数列的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多边形ABPCD中(图1),四边形ABCD为长方形,为正三角形,,现以BC为折痕将折起,使点P在平面ABCD内的射影恰好在AD上(图2.

1)证明:平面平面PAB

2)若点E在线段PB上,且,当点Q在线段AD上运动时,求点Q到平面EBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为抗击“新冠肺炎”,全国各地“停课不停学”,各学校都开展了在线课堂,组织学生在线学习,并自主安排时间完成相应作业为了解学生的学习效率,某在线教育平台统计了部分高三备考学生每天完成数学作业所需的平均时间,绘制了如图所示的频率分布直方图.

1)如果学生在完成在线课程后每天平均自主学习时间(完成各科作业及其他自主学习)为小时,估计高三备考学生每天完成数学作业的平均时间占自主学习时间的比例(同一组中的数据用该组区间的中点值为代表)(结果精确到);

2)以统计的频率作为概率,估计一个高三备考学生每天完成数学作业的平均时间不超过分钟的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】团购已成为时下商家和顾客均非常青睐的一种省钱、高校的消费方式,不少商家同时加入多家团购网.现恰有三个团购网站在市开展了团购业务, 市某调查公司为调查这三家团购网站在本市的开展情况,从本市已加入了团购网站的商家中随机地抽取了50家进行调查,他们加入这三家团购网站的情况如下图所示.

(1)从所调查的50家商家中任选两家,求他们加入团购网站的数量不相等的概率;

(2)从所调查的50家商家中任取两家,用表示这两家商家参加的团购网站数量之差的绝对值,求随机变量的分布列和数学期望;

(3)将频率视为概率,现从市随机抽取3家已加入团购网站的商家,记其中恰好加入了两个团购网站的商家数为,试求事件“”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】微信是腾讯公司推出的一种手机通讯软件,它支持发送语音、短信、视频、图片和文字,一经推出便风靡全国,甚至涌现出一批在微信的朋友圈内销售商品的人(被称为微商).为了调查每天微信用户使用微信的时间,某经销化妆品的微商在一广场随机采访140位市民进行调查,其中每天玩微信超过6小时的用户称为微信控,否则称其为非微信控 调查结果统计如下:

微信控

非微信控

合计

女性

60

男性

30

合计

70

140

1)根据以上数据,把表格中的数据填写完整;

2)利用(1)完成的表格数据回答下列问题:

①是否在犯错误的概率不超过0.001的前提下认为微信控性别有关;

②已知在被调查的女性微信控市民中有5位退休老人,其中2位是教师,现从这5位退休老人中随机抽取2人,求至少有1位老师的概率.

附表:其中

P(K2k)

0.050

0.025

0.010

0.005

0.001

k

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业响应省政府号召,对现有设备进行改造,为了分析设备改造前后的效果,现从设备改造前后生产的大量产品中各抽取了件产品作为样本,检测一项质量指标值,若该项质量指标值落在内的产品视为合格品,否则为不合格品.如图是设备改造前的样本的频率分布直方图,表是设备改造后的样本的频数分布表.

表:设备改造后样本的频数分布表

质量指标值

频数

(1)完成下面的列联表,并判断是否有的把握认为该企业生产的这种产品的质量指标值与设备改造有关;

设备改造前

设备改造后

合计

合格品

不合格品

合计

(2)根据频率分布直方图和表 提供的数据,试从产品合格率的角度对改造前后设备的优劣进行比较;

(3)企业将不合格品全部销毁后,根据客户需求对合格品进行登记细分,质量指标值落在内的定为一等品,每件售价元;质量指标值落在内的定为二等品,每件售价元;其它的合格品定为三等品,每件售价.根据表的数据,用该组样本中一等品、二等品、三等品各自在合格品中的频率代替从所有产品中抽到一件相应等级产品的概率.现有一名顾客随机购买两件产品,设其支付的费用为(单位:元),求的分布列和数学期望.

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线为参数,),曲线为参数).若曲线相切.

1)在以为极点,轴非负半轴为极轴的极坐标系中,求曲线的极坐标方程;

2)若点为曲线上两动点,且满足,求面积的最大值.

查看答案和解析>>

同步练习册答案
鍏� 闂�