若等差数列{an}中,公差d=2,且a1+a2+…+a100=200,则a5+a10+a15+…+a100的值是
______.
因为s100=
=
=200,所以a1=-97,则an=2n-99,
而a5,a10,a15,…,a100为首项为-89,公差为10的等差数列,项数是20,
则a5+a10+a15+…+a100=20×(-89)+
×10=120
故答案为120
| 100(a1+a100) |
| 2 |
| 100(2a1+198) |
| 2 |
而a5,a10,a15,…,a100为首项为-89,公差为10的等差数列,项数是20,
则a5+a10+a15+…+a100=20×(-89)+
| 20×19 |
| 2 |
故答案为120