【题目】3月底,我国新冠肺炎疫情得到有效防控,但海外确诊病例却持续暴增,防疫物资供不应求,某医疗器械厂开足马力,日夜生产防疫所需物品.已知该厂有两条不同生产线和
生产同一种产品各10万件,为保证质量,现从各自生产的产品中分别随机抽取20件,进行品质鉴定,鉴定成绩的茎叶图如下所示:
该产品的质量评价标准规定:鉴定成绩达到的产品,质量等级为优秀;鉴定成绩达到
的产品,质量等级为良好;鉴定成绩达到
的产品,质量等级为合格.
(1)从等级为优秀的样本中随机抽取两件,求两件均由生产线生产的概率;
(2)请完成下面质量等级与生产线产品列联表,并判断能不能在误差不超过0.05的情况下,认为产品等级是否达到良好以上与生产产品的生产线有关.
|
| 合计 | |
良好以上 | |||
合格 | |||
合计 |
附:
0.10 | 0.05 | 0.01 | 0.005 | |
2.706 | 3.841 | 6.635 | 7.879 |
【答案】(1)(2)见解析,不能
【解析】
(1)利用古典概型的概率公式求两件均由生产线生产的概率;(2)先完成质量等级与生产线产品列联表,再利用独立性检验计算判断得解.
(1)从茎叶图知,样本中优秀的产品有2件来自生产线,3件来自
生产线;
设生产线的产品为
,
,
生产线的产品分别为
,
从这5件优秀产品中任意抽取两件的所有情况有:
,
,
,
,
,
,
,
,
,
共10种,
其中均来自生产线的有
,
,
共3种,
两件均由
生产线生产的概率为
.
(2)由已知可得,列联表为
|
| 合计 | |
良好以上 | 6 | 12 | 18 |
合格 | 14 | 8 | 22 |
合计 | 20 | 20 | 40 |
,
所以不能在误差不超过0.05的情况下,认为产品等级是否达到良好以上与生产产品的生产线有关.
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在极坐标系中,直线的极坐标方程为
,现以极点
为原点,极轴为
轴的非负半轴建立平面直角坐标系,曲线
的参数方程为
(
为参数).
(1)求直线的直角坐标方程和曲线
的普通方程;
(2)若曲线为曲线
关于直线
的对称曲线,点
,
分别为曲线
、曲线
上的动点,点
坐标为
,求
的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】公元2020年春,我国湖北武汉出现了新型冠状病毒,人感染后会出现发热、咳嗽、气促和呼吸困难等,严重的可导致肺炎甚至危及生命.为了尽快遏制住病毒的传播,我国科研人员,在研究新型冠状病毒某种疫苗的过程中,利用小白鼠进行科学试验.为了研究小白鼠连续接种疫苗后出现症状的情况,决定对小白鼠进行做接种试验.该试验的设计为:①对参加试验的每只小白鼠每天接种一次;②连续接种三天为一个接种周期;③试验共进行3个周期.已知每只小白鼠接种后当天出现症状的概率均为
,假设每次接种后当天是否出现
症状与上次接种无关.
(1)若某只小白鼠出现症状即对其终止试验,求一只小白鼠至多能参加一个接种周期试验的概率;
(2)若某只小白鼠在一个接种周期内出现2次或3次症状,则在这个接种周期结束后,对其终止试验.设一只小白鼠参加的接种周期为
,求
的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点P在抛物线上,且点P的横坐标为2,以P为圆心,
为半径的圆(O为原点),与抛物线C的准线交于M,N两点,且
.
(1)求抛物线C的方程;
(2)若抛物线的准线与y轴的交点为H.过抛物线焦点F的直线l与抛物线C交于A,B,且,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我们把有相同数字相邻的数叫“兄弟数”,现从由一个1,一个2,两个3,两个4这六个数字组成的所有不同的六位数中随机抽取一个,则抽到“兄弟数”的概率为______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设等差数列{an}的前n项和为Sn,已知(a4-1)3+2 016(a4-1)=1,(a2 013-1)3+2 016·(a2 013-1)=-1,则下列结论正确的是( )
A. S2 016=-2 016,a2 013>a4
B. S2 016=2 016,a2 013>a4
C. S2 016=-2 016,a2 013<a4
D. S2 016=2 016,a2 013<a4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com