【题目】在△ABC中,∠A=60°,c=
a.(13分)
(1)求sinC的值;
(2)若a=7,求△ABC的面积.
参考答案:
【答案】
(1)
解:∠A=60°,c=
a,
由正弦定理可得sinC=
sinA=
×
=
,
(2)
解:a=7,则c=3,
∴C<A,
由(1)可得cosC=
,
∴sinB=sin(A+C)=sinAcosC+cosAsinC=
×
+
×
=
,
∴S△ABC=
acsinB=
×7×3×
=6
.
【解析】(1.)根据正弦定理即可求出答案,
(2.)根据同角的三角函数的关系求出cosC,再根据两角和正弦公式求出sinB,根据面积公式计算即可.
【考点精析】根据题目的已知条件,利用两角和与差的正弦公式和正弦定理的定义的相关知识可以得到问题的答案,需要掌握两角和与差的正弦公式:
;正弦定理:
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系xOy中,角α与角β均以Ox为始边,它们的终边关于y轴对称,若sinα=
,则cos(α﹣β)= . -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,AB=BC=4,点E在线段AB上.过点E作EF∥BC交AC于点F,将△AEF沿EF折起到△PEF的位置(点A与P重合),使得∠PEB=60°.

(1)求证:EF⊥PB.
(2)试问:当点E在线段AB上移动时,二面角PFCB的平面角的余弦值是否为定值?若是,求出其定值;若不是,说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中Ai的横、纵坐标分别为第i名工人上午的工作时间和加工的零件数,点Bi的横、纵坐标分别为第i名工人下午的工作时间和加工的零件数,i=1,2,3.
①记Qi为第i名工人在这一天中加工的零件总数,则Q1 , Q2 , Q3中最大的是 .
②记pi为第i名工人在这一天中平均每小时加工的零件数,则p1 , p2 , p3中最大的是 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在四棱锥P﹣ABCD中,底面ABCD为正方形,平面PAD⊥平面ABCD,点M在线段PB上,PD∥平面MAC,PA=PD=
,AB=4.(14分)
(1)求证:M为PB的中点;
(2)求二面角B﹣PD﹣A的大小;
(3)求直线MC与平面BDP所成角的正弦值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了研究一种新药的疗效,选100名患者随机分成两组,每组各50名,一组服药,另一组不服药.一段时间后,记录了两组患者的生理指标x和y的数据,并制成如图,其中“*”表示服药者,“+”表示未服药者.(13分)
(1)从服药的50名患者中随机选出一人,求此人指标y的值小于60的概率;
(2)从图中A,B,C,D四人中随机选出两人,记ξ为选出的两人中指标x的值大于1.7的人数,求ξ的分布列和数学期望E(ξ);
(3)试判断这100名患者中服药者指标y数据的方差与未服药者指标y数据的方差的大小.(只需写出结论)
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知抛物线C:y2=2px过点P(1,1).过点(0,
)作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP、ON交于点A,B,其中O为原点.(14分)
(1)求抛物线C的方程,并求其焦点坐标和准线方程;
(2)求证:A为线段BM的中点.
相关试题