已知定义域为R的函数y=f(x)满足f(-x)=-f(x+4),当x>2时,f(x)单调递增,若x1+x2<4且(x1-2)(x2-2)<0,则f(x1)+f(x2)的值


  1. A.
    恒大于0
  2. B.
    恒小于0
  3. C.
    可能等于0
  4. D.
    可正可负
B
分析:先通过给定条件确定函数为关于点(2,0)成中心对称,再由图象可得答案.
解答:解:由函数y=f(x)满足f(-x)=-f(x+4)得函数的图象关于点(2,0)对称,
由x1+x2<4且(x1-2)(x2-2)<0不妨设x1>2,x2<2,
借助图象可得f(x1)+f(x2)的值恒小于0,
故选B.
点评:本题主要考查函数的对称性.
关闭