2025年成才之路高中新课程学习指导高中数学选择性必修第二册人教版
注:目前有些书本章节名称可能整理的还不是很完善,但都是按照顺序排列的,请同学们按照顺序仔细查找。练习册 2025年成才之路高中新课程学习指导高中数学选择性必修第二册人教版 答案主要是用来给同学们做完题方便对答案用的,请勿直接抄袭。
第26页
- 第1页
- 第2页
- 第3页
- 第4页
- 第5页
- 第6页
- 第7页
- 第8页
- 第9页
- 第10页
- 第11页
- 第12页
- 第13页
- 第14页
- 第15页
- 第16页
- 第17页
- 第18页
- 第19页
- 第20页
- 第21页
- 第22页
- 第23页
- 第24页
- 第25页
- 第26页
- 第27页
- 第28页
- 第29页
- 第30页
- 第31页
- 第32页
- 第33页
- 第34页
- 第35页
- 第36页
- 第37页
- 第38页
- 第39页
- 第40页
- 第41页
- 第42页
- 第43页
- 第44页
- 第45页
- 第46页
- 第47页
- 第48页
- 第49页
- 第50页
- 第51页
- 第52页
- 第53页
- 第54页
- 第55页
- 第56页
- 第57页
- 第58页
- 第59页
- 第60页
- 第61页
- 第62页
- 第63页
- 第64页
- 第65页
- 第66页
- 第67页
- 第68页
- 第69页
- 第70页
- 第71页
- 第72页
- 第73页
- 第74页
例3. 在等比数列$\{a_{n}\}$中,
(1)$a_{5}=8,a_{7}=2,a_{n}>0$,求$a_{n}$;
(2)$a_{n}=625,n = 4,q = 5$,求$a_{1}$;
(3)$a_{2}+a_{5}=18,a_{3}+a_{6}=9,a_{n}=1$,求$n$.
(1)$a_{5}=8,a_{7}=2,a_{n}>0$,求$a_{n}$;
(2)$a_{n}=625,n = 4,q = 5$,求$a_{1}$;
(3)$a_{2}+a_{5}=18,a_{3}+a_{6}=9,a_{n}=1$,求$n$.
答案:
【解析】 设数列$\{a_{n}\}$的公比为$q$.
(1) 因为$\begin{cases} a_{5} = a_{1}q^{4}, \\ a_{7} = a_{1}q^{6}, \end{cases}$ 所以$\begin{cases} a_{1}q^{4} = 8, \\ a_{1}q^{6} = 2. \end{cases}$ ①②
由$\frac{②}{①}$得$q^{2} = \frac{1}{4}$,因为$a_{n} > 0$,所以$q = \frac{1}{2}, a_{1} = 128$,
所以$a_{n} = a_{1} · q^{n - 1} = 128 × \left( \frac{1}{2} \right)^{n - 1} = \left( \frac{1}{2} \right)^{n - 8}$.
(2) $a_{1} = \frac{a_{n}}{q^{n - 1}} = \frac{625}{5^{4 - 1}} = 5$,解得$a_{1} = 5$.
(3) 因为$\begin{cases} a_{2} + a_{5} = a_{1}q + a_{1}q^{4} = 18, \\ a_{3} + a_{6} = a_{1}q^{2} + a_{1}q^{5} = 9, \end{cases}$ ①②
由$\frac{②}{①}$得$q = \frac{1}{2}$,所以$a_{1} = 32$.
又$a_{n} = 1$,所以$32 × \left( \frac{1}{2} \right)^{n - 1}$
$= 1$,
即$2^{6 - n} = 2^{0}$,解得$n = 6$.
---
(1) 因为$\begin{cases} a_{5} = a_{1}q^{4}, \\ a_{7} = a_{1}q^{6}, \end{cases}$ 所以$\begin{cases} a_{1}q^{4} = 8, \\ a_{1}q^{6} = 2. \end{cases}$ ①②
由$\frac{②}{①}$得$q^{2} = \frac{1}{4}$,因为$a_{n} > 0$,所以$q = \frac{1}{2}, a_{1} = 128$,
所以$a_{n} = a_{1} · q^{n - 1} = 128 × \left( \frac{1}{2} \right)^{n - 1} = \left( \frac{1}{2} \right)^{n - 8}$.
(2) $a_{1} = \frac{a_{n}}{q^{n - 1}} = \frac{625}{5^{4 - 1}} = 5$,解得$a_{1} = 5$.
(3) 因为$\begin{cases} a_{2} + a_{5} = a_{1}q + a_{1}q^{4} = 18, \\ a_{3} + a_{6} = a_{1}q^{2} + a_{1}q^{5} = 9, \end{cases}$ ①②
由$\frac{②}{①}$得$q = \frac{1}{2}$,所以$a_{1} = 32$.
又$a_{n} = 1$,所以$32 × \left( \frac{1}{2} \right)^{n - 1}$
$= 1$,
即$2^{6 - n} = 2^{0}$,解得$n = 6$.
---
[方法总结3]
跟踪训练3
在等比数列$\{a_{n}\}$中,$a_{2}+a_{4}=1,a_{6}+a_{8}=9$,则$a_{2}=$ (
[方法总结3]
关于等比数列基本量的运算
(1)$a_{1}$和$q$是等比数列的两个基本量,解决相应问题时,只要要求出这两个基本量,其余的量便可以得出;
(2) 等比数列的通项公式涉及$4$个量$a_{1},a_{n},n,q$,只要知道其中任意三个就能求出另外一个,解题时常列方程(组)来解决.
A. $\frac{1}{4}$
B. $\frac{1}{3}$
C. $\frac{1}{2}$
D. 4
跟踪训练3
在等比数列$\{a_{n}\}$中,$a_{2}+a_{4}=1,a_{6}+a_{8}=9$,则$a_{2}=$ (
A
)[方法总结3]
关于等比数列基本量的运算
(1)$a_{1}$和$q$是等比数列的两个基本量,解决相应问题时,只要要求出这两个基本量,其余的量便可以得出;
(2) 等比数列的通项公式涉及$4$个量$a_{1},a_{n},n,q$,只要知道其中任意三个就能求出另外一个,解题时常列方程(组)来解决.
A. $\frac{1}{4}$
B. $\frac{1}{3}$
C. $\frac{1}{2}$
D. 4
答案:
A 由题得$\begin{cases} a_{1}q + a_{1}q^{3} = 1, \\ a_{1}q^{5} + a_{1}q^{7} = 9, \end{cases}$ 解得$q^{2} = 3, \therefore q = \sqrt{3}$或
$q = -\sqrt{3}$. 当$q = \sqrt{3}$时,$a_{1} = \frac{\sqrt{3}}{12}$;当$q = -\sqrt{3}$时,$a_{1} = -\frac{\sqrt{3}}{12}$.
$\therefore a_{2} = a_{1}q = \frac{1}{4}$.
---
$q = -\sqrt{3}$. 当$q = \sqrt{3}$时,$a_{1} = \frac{\sqrt{3}}{12}$;当$q = -\sqrt{3}$时,$a_{1} = -\frac{\sqrt{3}}{12}$.
$\therefore a_{2} = a_{1}q = \frac{1}{4}$.
---
1. 下列数列为等比数列的是 (
A.$2,2^{2},3×2^{2},·s$
B.$\frac{1}{2},\frac{1}{2^{2}},\frac{1}{2^{3}},·s$
C.$s - 1,(s - 1)^{2},(s - 1)^{3},·s$
D.$0,0,0,·s$
B
)A.$2,2^{2},3×2^{2},·s$
B.$\frac{1}{2},\frac{1}{2^{2}},\frac{1}{2^{3}},·s$
C.$s - 1,(s - 1)^{2},(s - 1)^{3},·s$
D.$0,0,0,·s$
答案:
B A项不满足定义,C项可为0,D项不符合定义. 故选B.
---
---
2. 等比数列$\{a_{n}\}$中,$a_{4}=1,a_{8}=16$,则$a_{6}=$
4
答案:
4 方法一: $\because a_{8} = a_{4}q^{4}, \therefore q^{4} = \frac{a_{8}}{a_{4}} = 16, \therefore q^{2} = 4, \therefore a_{6} = a_{4}q^{2}$
$= 4$.
方法二: $\because a_{6}$是$a_{4}$与$a_{8}$的等比中项,$\therefore a_{6}^{2} = a_{4} · a_{8} = 16$,又$\because$
$a_{6}$与$a_{4}, a_{8}$同号,$\therefore a_{6} = 4$.
---
$= 4$.
方法二: $\because a_{6}$是$a_{4}$与$a_{8}$的等比中项,$\therefore a_{6}^{2} = a_{4} · a_{8} = 16$,又$\because$
$a_{6}$与$a_{4}, a_{8}$同号,$\therefore a_{6} = 4$.
---
3. 数列$-\frac{1}{2},\frac{1}{4},-\frac{1}{8},\frac{1}{16},·s$的通项公式为$a_{n}=$
$\left( -\frac{1}{2} \right)^{n}$
答案:
$\left( -\frac{1}{2} \right)^{n}$ 该数列是以$-\frac{1}{2}$为公比,$-\frac{1}{2}$为首项的等比数
列,则$a_{n} = \left( -\frac{1}{2} \right)^{n}$.
---
列,则$a_{n} = \left( -\frac{1}{2} \right)^{n}$.
---
查看更多完整答案,请扫码查看